Bài 1 trang 44 SGK Đại số 10 nâng cao

Tìm tập xác định của mỗi hàm số sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của mỗi hàm số sau

LG a

\(\displaystyle y = {{3x + 5} \over {{x^2} - x + 1}}\)

Phương pháp giải:

Biểu thức \(\frac{P}{Q}\) xác định khi \(Q\ne 0\).

Lời giải chi tiết:

Vì \({x^2} - x + 1 = {x^2} - 2.\frac{1}{2}.x + \frac{1}{4} + \frac{3}{4} \)\(= {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} > 0,\forall x\)

Do đó x2 – x + 1 ≠ 0 với mọi \(x ∈\mathbb R\) nên tập xác định của hàm số là \(D =\mathbb R\)

LG b

\(\displaystyle y = {{x - 2} \over {{x^2} - 3x + 2}}\)

Lời giải chi tiết:

Do phương trình: x2 - 3x + 2 = 0 có tập nghiệm là {1; 2} nên:

Hàm số xác định

\( \Leftrightarrow \,{x^2} - 3x + 2 \ne 0 \Leftrightarrow \left\{ \matrix{
x \ne 1 \hfill \cr 
x \ne 2 \hfill \cr} \right.\)

Vậy \(D{\rm{ }} = {\rm{ }}\mathbb R\backslash \left\{ {1,{\rm{ }}2} \right\}\)

LG c

\(y = {{\sqrt {x - 1} } \over {x - 2}}\)

Lời giải chi tiết:

Hàm số xác định:

\( \Leftrightarrow \left\{ \matrix{
x - 1 \ge 0 \hfill \cr 
x - 2 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 1 \hfill \cr 
x \ne 2 \hfill \cr} \right.\)

Vậy \(D = [1; 2) ∪ (2; +∞)\) hoặc \(D = \left[ {1; + \infty } \right)\backslash \left\{ 2 \right\}\)

LG d

\(y = {{{x^2} - 2} \over {(x + 2)\sqrt {x + 1} }}\)

Lời giải chi tiết:

Hàm số xác định 

\( \Leftrightarrow \left\{ \matrix{
x + 2 \ne 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ne- 2 \hfill \cr 
x > - 1 \hfill \cr} \right. \)

\(\Leftrightarrow x > - 1\)

Vậy \(D= (-1; +∞)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close