Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {{x^2} - 1} \right)^2}\left( {x - 2} \right),\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là: A. 1. B. 2. C. 3. D. 4.
Xem lời giảiCho hàm số \(y = 2{x^3} + 3x + 2\). Kết luận nào sau đây là đúng? A. Hàm số có 3 cực trị. B. Hàm số có 2 cực trị. C. Hàm số có 1 cực trị. D. Hàm số không có cực trị.
Xem lời giảiHàm số \(y = {x^3} - 3{x^2} - 9x - 3\) đạt cực tiểu tại điểm: A. ‒1. B. 3. C. 2. D. ‒30.
Xem lời giảiCho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 5. Số điểm cực trị của hàm số đã cho là: A. 2. B. 4. C. 1. D. 3.
Xem lời giảiCho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 6. Giá trị cực tiểu của hàm số đã cho là: A. 2. B. 1. C. ‒1. D. 0.
Xem lời giảiCho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 7. Số điểm cực trị của hàm số \(y = f\left( x \right)\) là: A. 4. B. 3. C. 2. D. 1.
Xem lời giảiTrong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {x^3} - 3{rm{x}} + 2). a) (y' = 3{{rm{x}}^2} - 3). b) (y' = 0) khi (x = - 1,x = 1). c) (y' > 0) khi (x in left( { - 1;1} right)) và (y' < 0) khi (x in left( { - infty ; - 1} right) cup left( {1; + infty } right)). d) Giá trị cực đại của hàm số là ${{f}_{CĐ}}=0$.
Xem lời giảiTrong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 8. a) \(f'\left( x \right) = 0\) khi \(x = 0,x = 1,x = 3\). b) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\). c) \(f'\left( x \right) > 0\) khi \(x \in \left( {0;3} \right)\). d) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {0;3} \right)\).
Xem lời giảiTìm các khoảng đơn điệu của mỗi hàm số sau: a) \(y = - \frac{1}{3}{x^3} + {x^2} + 3{\rm{x}} - 1\); b) \(y = {x^3} - 3{x^2} + 3{\rm{x}} - 1\); c) \(y = {x^4} + {x^2} - 2\); d) \(y = - {x^4} + 2{{\rm{x}}^2} - 1\); e) \(y = \frac{{2{\rm{x}} - 3}}{{{\rm{x}} - 4}}\); g) \(y = \frac{{{x^2} + x + 2}}{{x + 2}}\).
Xem lời giảiTìm điểm cực trị của mỗi hàm số sau: a) \(y = {x^3} - 12{\rm{x}} + 8\); b) \(y = 2{{\rm{x}}^4} - 4{{\rm{x}}^2} - 1\); c) \(y = \frac{{{x^2} - 2{\rm{x}} - 2}}{{x + 1}}\); d) \(y = - x + 1 - \frac{9}{{x - 2}}\)
Xem lời giải