Lý thuyết tứ giác

Tứ giác ABCD là hình gồm bốn đoạn thẳng

Quảng cáo

1. Các kiến thức cần nhớ 

Tứ giác

Định nghĩa : Tứ giác ABCD là một hình gồm bốn đoạn thẳng AB , BC , CD , DA, trong đó bất kỳ hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Tứ giác lồi

Định nghĩa: Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kỳ cạnh nào của tứ giác.

Ví dụ: Tứ giác ABCD (hình 1) là tứ giác lồi

Tổng các góc của một tứ giác

Định lý : Tổng bốn góc của một tứ giác bằng 3600.

Ví dụ: Tứ giác ABCDA^+B^+C^+D^=360

Chú ý:  Góc ngoài của tứ giác là góc kề bù với một góc của tứ giác.

Ví dụ: Góc CBx là góc ngoài tại đỉnh B của tứ giác ABCD CBx^+ABC^=180. 

Đa giác đều

Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.

2. Các dạng toán thường gặp

Dạng 1: Sử dụng tính chất về các góc của một tứ giác để tính góc

Phương pháp:

Ta sử dụng các kiến thức:

+ Tổng bốn góc của một tứ giác bằng3600 .

+ Góc ngoài của tứ giác là góc kề bù với một góc của tứ giác.

Dạng 2: Sử dụng bất đẳng thức tam giác để giải các bài toán liên quan đến các cạnh của một tứ giác

Phương pháp:

Ta sử dụng các kiến thức sau:

+ Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.

+ Trong một tam giác, hiệu độ dài hai cạnh bất kì bao giờ cũng nhỏ hơn độ dài cạnh còn lại.

+ Trong một tam giác, độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng các độ dài của hai cạnh còn lại.

Nghĩa là: Trong tam giác ABC ta có |ABAC|<BC<AB+AC.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

close