Lý thuyết: Rút gọn phân số - SGK Cánh diều

Lý thuyết: Rút gọn phân số

Quảng cáo

1. Ví dụ:

Cho phân số $\frac{9}{{12}}$. Theo tính chất cơ bản của phân số, ta có:

$\frac{9}{{12}} = \frac{{9:3}}{{12:3}} = \frac{3}{4}$. Vậy $\frac{9}{{12}} = \frac{3}{4}$

Ta thấy:

Hai phân số $\frac{9}{{12}}$ và $\frac{3}{4}$ bằng nhau

Tử số và mẫu số của phân số $\frac{3}{4}$ đều bé hơn tử số và mẫu số của phân số $\frac{9}{{12}}$

Ta nói rằng: Phân số $\frac{9}{{12}}$ đã được rút gọn thành phân số $\frac{3}{4}$

Nhận xét: 3 và 4 không cùng chia hết cho một số tự nhiên nào lớn hơn 1, nên phân số $\frac{3}{4}$ không thể rút gọn được nữa. Ta nói rằng:

Phân số $\frac{3}{4}$ là phân số tối giản

Phân số $\frac{9}{{12}}$ đã được rút gọn thành phân số tối giản $\frac{3}{4}$

2. Cách rút gọn phân số

 

Khi rút gọn phân số ta có thể làm như sau:

Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn 1

Chia cả tử số và mẫu số cho số đó

Ví dụ: Rút gọn phân số $\frac{{15}}{{25}}$

Ta thấy 15 và 25 đều chia hết cho 5. Do đó $\frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5}$

 

Quảng cáo

Tham Gia Group Dành Cho 2K15 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close