Lý thuyết Lũy thừa với số mũ tự nhiên Toán 6 KNTT với cuộc sống

Lý thuyết Lũy thừa với số mũ tự nhiên Toán 6 KNTT với cuộc sống ngắn gọn, đầy đủ, dễ hiểu

Tổng hợp đề thi học kì 1 lớp 6 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên...

Quảng cáo

 1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:

\({a^n} = a.a \ldots ..a\) (\(n\)  thừa số \(a\) ) (\(n \ne 0\))

\({a^n}\) đọc là “a mũ n” hoặc “a lũy thừa n”.

\(a\) được gọi là cơ số.

\(n\) được gọi là số mũ.

Phép nhân nhiều thừa số giống nhau như trên được gọi là phép nâng lên lũy thừa.

\({a^1} = a\)

\({a^2} = a.a\)  gọi là \(a\)  bình phương”  (hay bình phương của \(a\)).

\({a^3} = a.a.a\) gọi là \(a\) lập phương” (hay lập phương của \(a\)).

Quy ước: \({a^1} = a\); \({a^0} = 1\left({a \ne 0} \right).\)

Ví dụ: Tính \({2^3}\).

Số trên là lũy thừa bậc 3 của 2 và là tích của 3 thừa số 2 nhân với nhau nên ta có:

\({2^3} = 2.2.2 = 8\)

2. Nhân hai lũy thừa cùng cơ số

\({a^m}.{a^n} = {a^{m + n}}\)

Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ sốcộng các số mũ.

Ví dụ: \({3.3^5} = {3^1}{.3^5} = {3^{1 + 5}} = {3^6}.\)

3. Chia hai lũy thừa cùng cơ số

\({a^m}:{a^n} = {a^{m - n}}\) \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)

Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ sốtrừ các số mũ cho nhau.

Ví dụ: \({3^5}:3 = {3^5}:{3^1} = {3^{5 - 1}} = {3^4} = 3.3.3.3 = 81\)

Quảng cáo

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close