Một số tình huống trong cuộc sống dẫn đến việc cộng, trừ hai đa thức một biến, chẳng hạn, ta phải tính tổng diện tích các mặt của hình hộp chữ nhật (Hình 2) có độ dài hai cạnh đáy là x (m), 2x (m) và chiều cao là 2 (m).
Phép cộng, phép trừ hai đa thức một biến được thực hiện như thế nào?
a) Thực hiện phép cộng trong mỗi trường hợp sau: \(5{x^2} + 7{x^2}\); \(a{x^2} + b{x^2}\) (k \(\in\) N*).
b) Nêu quy tắc cộng hai đơn thức có cùng số mũ của biến.
Cho hai đa thức
\(P(x) = 5{x^2} + 4 + 2x\) và \(Q(x) = 8x + {x^2} + 1\).
a) Sắp xếp các đa thức P(x), Q(x) theo số mũ giảm dần của biến.
b) Tìm đơn thức thích hợp trong dạng thu gọn của P(x) và Q(x) cho ? ở bảng sau rồi cộng hai đơn thức theo từng cột và thể hiện kết quả ở dòng cuối cùng của mỗi cột:
c) Dựa vào kết quả cộng hai đơn thức theo từng cột, xác định đơn thức R(x).
Để cộng hai đa thức P(x), Q(x), bạn Dũng viết như dưới đây có đúng không? Vì sao? Nếu chưa đúng, em hãy sửa lại cho đúng.
Cho hai đa thức:
\(P(x) = - 2{x^2} + 1 + 3x\) và \(Q(x) = - 5x + 3{x^2} + 4\).
a) Sắp xếp các đa thức P(x) và Q(x) theo số mũ giảm dần của biến.
b) Viết tổng P(x) + Q(x) theo hàng ngang.
c) Nhóm các đơn thức có cùng số mũ của biến với nhau.
d) Tính tổng P(x) + Q(x) bằng cách thực hiện phép tính trong từng nhóm.
Tính tổng của hai đa thức sau bằng hai cách:
\(P(x) = 2{x^3} + \dfrac{3}{2}{x^2} + 5x - 2\);
\(Q(x) = - 8{x^3} + 4{x^2} + 6 + 3x\).
a) Thực hiện phép trừ trong mỗi trường hợp sau: \(2{x^2} - 6{x^2}\); \(a{x^k} - b{x^k}\)(k \(\in\) N*).
b) Nêu quy tắc trừ hai đơn thức có cùng số mũ của biến.
\(P(x) = 4{x^2} + 1 + 3x\) và \(Q(x) = 5x + 2{x^2} + 3\).
b) Tìm đơn thức thích hợp trong dạng thu gọn của P(x) và Q(x) cho ? ở bảng sau rồi trừ hai đơn thức theo từng cột và thể hiện kết quả ở dòng cuối cùng của mỗi cột:
c) Dựa vào kết quả trừ hai đơn thức theo từng cột, xác định đơn thức S(x).
\(P(x) = 2{x^2} - 5x - \dfrac{1}{3}\)
và \(Q(x) = - 6{x^4} + 5{x^2} + \dfrac{2}{3} + 3x\).
Tính hiệu P(x) – Q(x).
\(P(x) = - 3{x^2} + 2 + 7x\) và \(Q(x) = - 4x + 5{x^2} + 1\).
b) Viết hiệu P(x) – Q(x) theo hàng ngang, trong đó đa thức Q(x) được đặt trong dấu ngoặc.
c) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q(x), nhóm các đơn thức có cùng số mũ của biến với nhau.
d) Tính hiệu P(x) – Q(x) bằng cách thực hiện phép tính trong từng nhóm.
Tính hiệu P(x) – Q(x) bằng hai cách, trong đó:
\(\begin{array}{l}P(x) = 6{x^3} + 8{x^2} + 5x - 2;\\Q(x) = - 9{x^3} + 6{x^2} + 3 + 2x.\end{array}\)
Cho hai đa thức: \(R(x) = - 8{x^4} + 6{x^3} + 2{x^2} - 5x + 1\) và \(S(x) = {x^4} - 8{x^3} + 2x + 3\). Tính:
a) R(x) + S(x);
b) R(x) – S(x).
Xác định bậc của hai đa thức là tổng, hiệu của:
\(A(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1\) và \(B(x) = 8{x^5} + 8{x^3} + 2x - 3\).
Bác Ngọc gửi ngân hàng thứ nhất 90 triệu đồng với kì hạn 1 năm, lãi suất x%/năm. Bác Ngọc gửi ngân hàng thứ hai 80 triệu đồng với kì hạn 1 năm, lãi suất \((x + 1,5)\)%/năm. Hết kì hạn 1 năm, bác Ngọc có được cả gốc lẫn lãi là bao nhiêu:
a) Ở ngân hàng thứ hai?
b) Ở cả hai ngân hàng?
Người ta rót nước từ một can đựng 10 lít sang một bể rỗng có dạng hình lập phương với độ dài cạnh 20cm. Khi mực nước trong bể cao h (cm) thì thể tích nước trong can còn lại là bao nhiêu? Biết rằng 1 lít = 1\(d{m^3}\).
Bạn Minh cho rằng “Tổng của hai đa thức bậc bốn luôn luôn là đa thức bậc bốn”. Bạn Quân cho rằng “Hiệu của hai đa thức bậc bốn luôn luôn là đa thức bậc bốn”. Hai bạn Minh và Quân nói như vậy có đúng không? Giải thích vì sao.
Cho đa thức \(F(x) = {x^7} - \frac{1}{2}{x^3} + x + 1\)
a) Tìm đa thức Q(x) sao cho F(x) + Q(x) = \({x^5} - {x^3} + 2\)
b) Tim đa thức R(x) sao cho F(x) – R(x) = 2
Tìm các đa thức P(x) và Q(x), biết P(x) + Q(x) = x2 + 1 và P(x) - Q(x) = 2x.
Cho hai đa thức: \(F(x) = {x^4} + {x^3} - 3{x^2} + 2x - 9\) và \(G(x) = - {x^4} + 2{x^2} - x + 8\)
a) Tìm đa thức H(x) sao cho H(x) = F(x) + G(x)
b) Tìm bậc của đa thức H(x)
c) Kiểm tra xem x = 0, x = 1, x = −1 có là nghiệm của đa thức H(x) hay không
d) Tìm đa thức K(x) sao cho H(x) - K(x) = \(\frac{1}{2}{x^2}\)
a) Cho các đa thức: \(A(x) = {x^2} - 0,45x + 1,2;B(x) = 0,8{x^2} - 1,2x;C(x) = 1,6{x^2} - 2x\)
Tính \(A(x) + B(x) - C(x)\)
b) Cho các đa thức: \(M(y) = {y^2} - 1,75y - 3,2;N(y) = 0,3{y^2} + 4;P(y) = 2y - 7,2\)
Tính \(M(y) - N(y) - P(y)\)
Mỗi chiếc bút bi được bán với giá x (đồng). Mỗi kẹp tóc có giá đắt hơn mỗi chiếc bút bi là 7 000 đồng, mỗi quyển truyện tranh có giá đắt gấp 5 lần mỗi chiếc bút bi. Bạn Khanh mua 4 chiếc kẹp tóc và 5 chiếc bút bi. Bạn Dung mua 1 quyển truyện tranh, 3 chiếc kẹp tóc và 10 chiếc bút bi.
a) Tính số tiền mỗi bạn phải trả theo x.
b) Tính tổng số tiền mà cửa hàng nhận được từ hai bạn Khanh và Dung theo x.
c) Nếu bạn Minh chỉ có 70 000 đồng và muốn mua hàng sao cho có đủ cả ba món đồ (bút bi, kẹp tóc, truyện tranh) thì bạn Minh có thể mua được nhiều nhất bao nhiêu chiếc kẹp tóc, biết giá mỗi chiếc bút bi là 5 000 đồng?
Cho hai đa thức: \(F(x) = 2{x^4} - {x^3} + x - 3;G(x) = - {x^3} + 5{x^2} + 4x + 2\)
a) Tìm đa thức H(x) sao cho \(F(x) + H(x) = 0\)
b) Tìm đa thức K(x) sao cho \(K(x) - G(x) = F(x)\)