Giữa hai điểm \(B\) và \(C\) có một hồ nước (xem hình bên). Biết \(DE = 45m\). Làm thế nào để tính được khoảng cách giữa hai điểm \(B\) và \(C\)?
Cho tam giác \(ABC\), vẽ đường thẳng \(d\) đi qua trung điểm \(M\) của cạnh \(AB\), song song với cạnh \(BC\) và cắt \(AC\) tại \(N\) (Hình 1). Hãy chứng minh \(N\) là trung điểm của \(AC\).
Tìm độ dài đoạn thẳng \(NQ\) trong Hình 4.
Trong Hình 5, chứng minh \(MN\) là đường trung bình của tam giác \(ABC\).
Cho \(M,N\) lần lượt là trung điểm của hai cạnh \(AB;AC\) của tam giác \(ABC\).
a) Tính các tỉ số \(\frac{{AM}}{{AB}},\frac{{AN}}{{AC}}\);
b) Chứng mình \(MN//BC\);
c) Chứng minh \(\frac{{MN}}{{BC}} = \frac{1}{2}\).
Trong Hình 8, cho biết \(JK = 10cm;DE = 6,5cm;EL = 3,7cm\). Tính \(DJ;EF;DF;KI\).
Hãy tính khoảng cách \(BC\) trong phần câu hỏi khởi động trang 52.
Câu hỏi khởi động:
Cho \(MN\) là đường trung bình của mỗi tam giác \(ABC\) trong Hình 9. Hãy tìm giá trị \(x\) trong mỗi hình.
Tính độ dài đoạn \(PQ\) (Hình 10).
Cho biết cạnh mỗi ô vuông bằng \(1cm\). Tính độ dài các đoạn \(PQ,PR,RQ,AB,BC,CA\) trong Hình 11.
Cho hình thang \(ABCD\left( {AB//CD} \right)\) có \(E\) và \(F\) lần lượt là trung điểm hai cạnh bên \(AD\) và \(BC\). Gọi \(K\) là giao điểm của \(AF\) và \(DC\) (Hình 12).
a) Tam giác \(FBA\) và tam giác \(FCK\) có bằng nhau không? Vì sao?
b) Chứng minh: \(EF//CD//AB\).
c) Chứng minh \(EF = \frac{{AB + CD}}{2}\).
Cho tam giác \(ABC\) nhọn. Gọi \(M,N,P\) lần lượt là trung điểm của \(AB;AC;BC\). Kẻ đường cao \(AH\). Chứng minh rằng tứ giác \(MNPH\) là hình thang cân.
Một mái nhà được vẽ như Hình 13. Tính độ dài \(x\) trong hình mái nhà.
Ảnh chụp từ Google Maps của một trường học được cho trong Hình 14. Hãy tính chiều dài cạnh \(DE\), cho biết \(BC = 232m\) và \(B,C\) lần lượt là trung điểm của \(AD\) và \(AE\).
Cho tam giác nhọn ABC có M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác BMNC là hình thang.
b) Gọi E là trung điểm của BC và I là giao điểm của AE với MN. Chứng minh I là trung điểm của MN.
Cho tam giác nhọn ABC, kẻ trung tuyến AM \(\left( {M \in BC} \right)\). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:
a) \(EF = FB\);
b) \(AE = \frac{1}{3}AB\);
c) \(CE = 4EI\).
Cho tam giác ABC, hai đường trung tuyến BM và CN cắt nhau tại G \(\left( {M \in AC,N \in AB} \right)\). Gọi D, E lần lượt là trung điểm của GB, GC. Chứng minh:
a) MN//DE
b) ND//ME
Cho hình thang ABCD (AB//CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. Chứng minh M, N, P, Q thẳng hàng.
Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.
a) Chứng minh tứ giác AMNB là hình thang.
b) Gọi I là giao điểm của AN và BM. Trên tia đối của tia NA lấy điểm E sao cho \(NE = NI\). Trên tia đối của tia MB lấy điểm F sao cho \(MF = MI\). Chứng minh EF//AB.
Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM//QO\(\left( {M \in OP} \right)\), IN//PO \(\left( {N \in QO} \right)\). Chứng minh:
a) Tam giác IMN cân tại I.
b) OI là đường trung trực của MN.