Hoạt động 6 trang 47 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Từ bảng kết luận về công thức nghiệm của phương trình bậc hai,

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Từ bảng kết luận về công thức nghiệm của phương trình bậc hai, thay b = 2b’ và \(\Delta  = 4\Delta '\) , hãy điền vào chỗ chấm.

Đối với phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)và b = 2b’, \(\Delta ' = b{'^2} - ac\)

a) Nếu \(\Delta ' > 0\) thì từ phương trình có hai nghiệm phân biệt

x1 = …………….; x2 = …………….

b) Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép x1 = x2 =  …………………

c) Nếu \(\Delta ' < 0\) thì …………………….

Lời giải chi tiết

Đối với phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và \(b = 2b’\), \(\Delta ' = b{'^2} - ac\)

a) Nếu \(\Delta ' > 0\) thì từ phương trình có hai nghiệm phân biệt \({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\)

b) Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}\)

c) Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Loigiaihay.com

Quảng cáo

Xem thêm tại đây: 3. Công thức nghiệm thu gọn
Gửi bài tập - Có ngay lời giải