Phần câu hỏi bài 10 trang 30, 31 Vở bài tập toán 8 tập 1Giải phần câu hỏi bài 10 trang 30, 31 VBT toán 8 tập 1. Khoanh tròn vào chữ cái trước đẳng thức đúng... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Câu 30. Khoanh tròn vào chữ cái trước đẳng thức đúng \((A)\,\,\left( { - 3{x^{2n}}{y^n}{z^n}} \right)\)\(:\left( { - \dfrac{3}{5}{x^n}{y^{n - 1}}{z^{n - 3}}} \right) \)\(= - 5{x^n}y{z^3}\) \((B)\,\,\left( { - 3\dfrac{1}{4}{x^{2n + 1}}{y^{n - 2}}{z^{n + 4}}} \right)\)\(:\left( { - 5\dfrac{3}{4}{x^{n - 1}}{y^{n - 3}}{z^{n - 2}}} \right) \)\(= \dfrac{{13}}{{23}}{x^n}y{z^6}\) \((C)\,\,\left( {\dfrac{2}{5}{x^6}{y^3}{z^4}} \right)\)\(:\left( { - \dfrac{3}{{25}}{x^2}y{z^4}} \right) \)\(= - 3\dfrac{1}{3}{x^4}{y^2}\) \((D)\,\,5{x^9}{y^5}{z^3}:\left( { - \dfrac{2}{3}{x^5}{y^4}{z^2}} \right) \)\(= - 8\dfrac{1}{2}{x^4}yz\) Phương pháp giải: Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau: - Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\) - Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\) - Nhân các kết quả vừa tìm được với nhau. Giải chi tiết: \((A)\,\left( { - 3{x^{2n}}{y^n}{z^n}} \right)\)\(:\left( { - \dfrac{3}{5}{x^n}{y^{n - 1}}{z^{n - 3}}} \right)\) \( = \left[ {\left( { - 3} \right):\left( { - \dfrac{3}{5}} \right)} \right]\)\(.\left( {{x^{2n}}:{x^n}} \right).\left( {{y^n}:{y^{n - 1}}} \right).\left( {{z^n}:{z^{n - 3}}} \right)\) \( = \left( { - 3} \right).\left( {\dfrac{{ - 5}}{3}} \right).{x^{2n - n}}.{y^{n - \left( {n - 1} \right)}}\)\(.{z^{n - \left( {n - 3} \right)}}\) \(= 5{x^n}y{z^3}\) \((B)\,\left( { - 3\dfrac{1}{4}{x^{2n + 1}}{y^{n - 2}}{z^{n + 4}}} \right)\)\(:\left( { - 5\dfrac{3}{4}{x^{n - 1}}{y^{n - 3}}{z^{n - 2}}} \right)\) \( = \left[ {\left( { - 3\dfrac{1}{4}} \right):\left( { - 5\dfrac{3}{4}} \right)} \right]\)\(.\left( {{x^{2n + 1}}:{x^{n - 1}}} \right)\)\(.\left( {{y^{n - 2}}:{y^{n - 3}}} \right).\left( {{z^{n + 4}}:{z^{n - 2}}} \right)\) \( = \left[ {\left( {\dfrac{{ - 13}}{4}} \right):\left( {\dfrac{{ - 23}}{4}} \right)} \right]\)\(.{x^{2n + 1 - \left( {n - 1} \right)}}.{y^{n - 2 - \left( {n - 3} \right)}}.{z^{n + 4 - \left( {n - 2} \right)}}\) \(= \left( {\dfrac{{ - 13}}{4}.\dfrac{{ - 4}}{{23}}} \right).{x^{n + 2}}y.{z^6}\) \( = \dfrac{{13}}{{23}}{x^{n + 2}}y{z^6}\) \((C)\,\left( {\dfrac{2}{5}{x^6}{y^3}{z^4}} \right)\)\(:\left( { - \dfrac{3}{{25}}{x^2}y{z^4}} \right)\) \( = \left[ {\dfrac{2}{5}:\left( {\dfrac{{ - 3}}{{25}}} \right)} \right]\)\(.\left( {{x^6}:{x^2}} \right).\left( {{y^3}:y} \right).\left( {{z^4}:{z^4}} \right)\) \( = \dfrac{2}{5}.\dfrac{{ - 25}}{3}.{x^{6 - 2}}.{y^{3 - 1}}.{z^{4 - 4}}\) \( = \dfrac{{ - 10}}{3}{x^4}{y^2} \) \(= - 3\dfrac{1}{3}{x^4}{y^2}\) \((D)\,5{x^9}{y^5}{z^3}\)\(:\left( { - \dfrac{2}{3}{x^5}{y^4}{z^2}} \right)\) \( = \left( {5:\dfrac{{ - 2}}{3}} \right).\left( {{x^9}:{x^5}} \right)\)\(.\left( {{y^5}:{y^4}} \right).\left( {{z^3}:{z^2}} \right)\) \( = 5.\dfrac{{ - 3}}{2}.{x^{9 - 5}}.{y^{5 - 4}}.{z^{3 - 2}}\) \( = \dfrac{{ - 15}}{2}{x^4}yz \)\(= - 7\dfrac{1}{2}{x^4}yz\) Chọn C. Câu 31. Điền dấu “x” vào ô thích hợp. Phương pháp giải: Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau: - Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\) - Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\) - Nhân các kết quả vừa tìm được với nhau. Giải chi tiết: \(+)\,{x^{12}}{y^7}{z^{n + 1}}:x{y^3}{z^n}\) \( = \left( {{x^{12}}:x} \right).\left( {{y^7}:{y^3}} \right)\)\(.\left( {{z^{n + 1}}:{z^n}} \right)\) \(= {x^{12 - 1}}{y^{7 - 3}}{z^{n + 1 - n}} \) \(= {x^{11}}{y^4}z\) \(+)\,\left( { - {x^{m + 2}}{y^{n - 9}}{z^{p + 5}}{t^{q - 1}}} \right)\)\(:{x^{m - 5}}{y^{n - 20}}{z^p}\) \( = \left( { - {x^{m + 2}}:{x^{m - 5}}} \right)\)\(.\left( {{y^{n - 9}}:{y^{n - 20}}} \right)\)\(.\left( {{z^{p + 5}}:{z^p}} \right).{t^{q - 1}}\) \( = - {x^{m + 2 - \left( {m - 5} \right)}}\)\(.{y^{n - 9 - \left( {n - 20} \right)}}.{z^{p + 5 - p}}.{t^{q - 1}}\)\( = - {x^7}{y^{11}}{z^5}{t^{q - 1}}\) \(+)\,5\dfrac{1}{2}{a^{m + 5}}{b^{m - 3}}{c^8}\)\(:\left( { - 1\dfrac{3}{5}{a^{m - 5}}{b^{m - 8}}{c^3}} \right.\) \( = \left[ {5\dfrac{1}{2}:\left( { - 1\dfrac{3}{5}} \right)} \right]\)\(.\left( {{a^{m + 5}}:{a^{m - 5}}} \right)\)\(.\left( {{b^{m - 3}}:{b^{m - 8}}} \right).\left( {{c^8}:{c^3}} \right)\) \( = \left( {\dfrac{{11}}{2}:\dfrac{{ - 8}}{5}} \right).{a^{m + 5 - \left( {m - 5} \right)}}\)\(.{b^{m - 3 - \left( {m - 8} \right)}}.{c^{8 - 3}}\) \( = \dfrac{{ - 55}}{{16}}{a^{10}}{b^5}{c^5} \)\(= - 3\dfrac{7}{{16}}{a^{10}}{b^5}c\) \(+)\,\dfrac{2}{5}{x^{n + 9}}{y^{n + 2}}:\left( { - \dfrac{3}{7}{x^2}{y^3}} \right)\) \( = \left[ {\dfrac{2}{5}:\left( { - \dfrac{3}{7}} \right)} \right].\left( {{x^{n + 9}}:{x^2}} \right)\)\(.\left( {{y^{n + 2}}:{y^3}} \right)\) \(= \left( {\dfrac{2}{5}.\dfrac{{ - 7}}{3}} \right).{x^{n + 9 - 2}}.{y^{n + 2 - 3}}\) \( = - \dfrac{{14}}{{15}}{x^{n + 7}}{y^{n - 1}}\) \(\begin{array}{l}+)\,{x^n}{y^{n + 1}}{z^{n + 2}}:{x^n}{y^n}{z^n}\\ = \left( {{x^n}:{x^n}} \right).\left( {{y^{n + 1}}:{y^n}} \right).\left( {{z^{n + 2}}:{z^n}} \right)\\ = {x^{n - n}}.{y^{n + 1 - n}}.{z^{n + 2 - n}} = y{z^2}\end{array}\) Ta có bảng sau: Câu 32. Khoanh tròn vào chữ cái trước đẳng thức sai \(\begin{array}{l}(A)\,\,\left( { - {x^n}{y^n}{z^n}} \right):{x^{n - 1}}{y^{n - 2}}{z^{n - 3}} \\= - x{y^2}{z^3}\\(B)\,\,\left( { - \dfrac{2}{3}{x^{n + 1}}{y^{n + 2}}} \right):\left( { - \dfrac{3}{4}{x^n}{y^{n - 8}}} \right) \\= \dfrac{8}{9}x{y^{10}}\\(C)\,\,{x^{2007}}{y^{2008}}{z^{2009}}:\left( { - \dfrac{1}{5}{x^2}yz} \right) \\= - 5{x^{2005}}{y^{2007}}{z^{2008}}\\(D)\,\,\left( { - 5{x^5}{y^{10}}{z^{15}}{t^{20}}} \right):\left( { - \dfrac{2}{3}{x^2}{y^4}{z^6}} \right) \\= 6\dfrac{1}{2}{x^3}{y^6}{z^9}{t^{20}}\end{array}\) Phương pháp giải: Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau: - Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\) - Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\) - Nhân các kết quả vừa tìm được với nhau. Giải chi tiết: \(+)\,\left( { - {x^n}{y^n}{z^n}} \right):{x^{n - 1}}{y^{n - 2}}{z^{n - 3}}\) \( = - \left( {{x^n}:{x^{n - 1}}} \right).\left( {{y^n}:{y^{n - 2}}} \right)\)\(.\left( {{z^n}:{z^{n - 3}}} \right)\) \( = - {x^{n - \left( {n - 1} \right)}}.{y^{n - \left( {n - 2} \right)}}.{z^{n - \left( {n - 3} \right)}} \) \(= - x{y^2}{z^3}\) \(+)\,\left( { - \dfrac{2}{3}{x^{n + 1}}{y^{n + 2}}} \right)\)\(:\left( { - \dfrac{3}{4}{x^n}{y^{n - 8}}} \right)\) \( = \left[ {\left( { - \dfrac{2}{3}} \right):\left( { - \dfrac{3}{4}} \right)} \right]\)\(.\left( {{x^{n + 1}}:{x^n}} \right).\left( {{y^{n + 2}}:{y^{n - 8}}} \right)\) \( = \left( {\dfrac{{ - 2}}{3}.\dfrac{{ - 4}}{3}} \right)\)\(.{x^{n + 1 - n}}.{y^{n + 2 - \left( {n - 8} \right)}} \) \(= \dfrac{8}{9}x{y^{10}}\) \(+)\,{x^{2007}}{y^{2008}}{z^{2009}}\)\(:\left( { - \dfrac{1}{5}{x^2}yz} \right)\) \( = 1:\left( { - \dfrac{1}{5}} \right).\left( {{x^{2007}}:{x^2}} \right)\)\(.\left( {{y^{2008}}:y} \right)\)\(.\left( {{z^{2009}}:z} \right)\) \( = 1.\left( {\dfrac{{ - 5}}{1}} \right)\)\(.{x^{2007 - 2}}.{y^{2008 - 1}}.{z^{2009 - 1}} \) \(= - 5{x^{2005}}{y^{2007}}{z^{2008}}\) \(+)\,\left( { - 5{x^5}{y^{10}}{z^{15}}{t^{20}}} \right)\)\(:\left( { - \dfrac{2}{3}{x^2}{y^4}{z^6}} \right)\) \( = \left[ {\left( { - 5} \right):\left( {\dfrac{{ - 2}}{3}} \right)} \right]\)\(.\left( {{x^5}:{x^2}} \right)\)\(.\left( {{y^{10}}:{y^4}} \right)\)\(.\left( {{z^{15}}:{z^6}} \right).{t^{20}}\) \( = \left( { - 5} \right).\left( {\dfrac{{ - 3}}{2}} \right)\)\(.{x^{5 - 2}}.{y^{10 - 4}}.{z^{15 - 6}}.{t^{20}}\) \( = \dfrac{{15}}{2}{x^3}{y^6}{z^9}{t^{20}} \) \(= 7\dfrac{1}{2}{x^3}{y^6}{z^9}{t^{20}}\) Chọn D. Loigiaihay.com
Quảng cáo
|