Giải bài 88 trang 40 sách bài tập toán 12 - Cánh diềuCho hàm số (fleft( x right)) có đạo hàm (f'left( x right) = {x^2}{left( {x + 1} right)^2}left( {x - 1} right)left( {x + 2} right),forall x in mathbb{R}). Điểm cực đại của hàm số đã cho là: A. ‒1. B. ‒2. C. 2. D. 1. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {x - 1} \right)\left( {x + 2} \right),\forall x \in \mathbb{R}\). Điểm cực đại của hàm số đã cho là: A. ‒1. B. ‒2. C. 2. D. 1. Phương pháp giải - Xem chi tiết Các bước để tìm điểm cực trị của hàm số \(f\left( x \right)\): Bước 1. Tìm tập xác định của hàm số \(f\left( x \right)\). Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại. Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên. Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các điểm cực trị của hàm số. Lời giải chi tiết Hàm số có tập xác định là \(\mathbb{R}\). Ta có: \(y' = 0\) khi \(x = 0;x = - 1;x = 1\) hoặc \(x = - 2\). Bảng xét dấu đạo hàm của hàm số: Dựa vào bảng xét dấu đạo hàm ta có: Hàm số đạt cực tiểu tại \(x = 1\) và đạt cực đại tại \(x = - 2\). Chọn B.
Quảng cáo
|