Giải bài 7 trang 88 sách bài tập toán 12 - Cánh diềuMột hộp đựng 24 chai nước giải khát có hình dạng và kích thước như nhau, trong đó có 2 chai nước giải khát ghi giải thưởng “Bạn nhận được thêm một chai nước giải khát”. Chọn ra ngẫu nhiên lần lượt (không hoàn lại) hai chai nước trong hộp. Tính xác suất để cả hai chai đều ghi giải thưởng. Quảng cáo
Đề bài Một hộp đựng 24 chai nước giải khát có hình dạng và kích thước như nhau, trong đó có 2 chai nước giải khát ghi giải thưởng “Bạn nhận được thêm một chai nước giải khát”. Chọn ra ngẫu nhiên lần lượt (không hoàn lại) hai chai nước trong hộp. Tính xác suất để cả hai chai đều ghi giải thưởng. Phương pháp giải - Xem chi tiết ‒ Sử dụng công thức tính xác suất của biến cố \(A\): \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\Omega } \right)}}\). ‒ Sử dụng công thức: \(P\left( {A \cap B} \right) = P\left( B \right).P\left( {A|B} \right)\). Lời giải chi tiết Xét các biến cố: \(A\): “Chai được chọn ở lần thứ nhất có ghi giải thưởng”; \(B\): “Chai được chọn ở lần thứ hai có ghi giải thưởng”; \(C\): “Cả hai chai được chọn đều ghi giải thưởng”. Khi đó \(C = A \cap B\). Số phần tử của không gian mẫu: \(n\left({\Omega } \right) = 24.23 = 552\). Số phần tử của biến cố \(A\): “Chai được chọn ở lần thứ nhất có ghi giải thưởng” là: \(n\left( A \right) = 2.22 + 2.1 = 46\). Vậy ta có: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left({\Omega } \right)}} = \frac{{46}}{{552}} = \frac{1}{{12}}\). Xác suất để chai được chọn ở lần thứ hai có ghi giải thưởng, biết chai được chọn ở lần thứ nhất có ghi giải thưởng là xác suất có điều kiện \(P\left( {B|A} \right)\). Vì sau khi lấy một chai có ghi giải thưởng thì trong lần thứ hai chỉ còn 1 chai có ghi giải thưởng và tổng số chai là 23 nên ta có: \(P\left( {B|A} \right) = \frac{1}{{23}}\). Ta có: \(P\left( {A \cap B} \right) = P\left( {B \cap A} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{1}{{12}}.\frac{1}{{23}} = \frac{{15}}{{276}}\).
Quảng cáo
|