Giải bài 69 trang 70 sách bài tập toán 12 - Cánh diềuLập phương trình của mặt cầu (left( S right)) trong mỗi trường hợp sau: a) (left( S right)) có tâm (Ileft( { - 2;3;8} right)) bán kính (R = 100); b) (left( S right)) có tâm (Ileft( {3; - 4;0} right)) và đi qua điểm (Mleft( {2; - 3;1} right)); c) (left( S right)) có đường kính là (AB) với (Aleft( { - 1;0;4} right)) và (Bleft( {1;0;2} right)). Quảng cáo
Đề bài Lập phương trình của mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau: a) \(\left( S \right)\) có tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\); b) \(\left( S \right)\) có tâm \(I\left( {3; - 4;0} \right)\) và đi qua điểm \(M\left( {2; - 3;1} \right)\); c) \(\left( S \right)\) có đường kính là \(AB\) với \(A\left( { - 1;0;4} \right)\) và \(B\left( {1;0;2} \right)\). Phương pháp giải - Xem chi tiết ‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu. ‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\). Lời giải chi tiết a) Phương trình của mặt cầu tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\) là: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = {100^2}\) hay \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = 10000\). b) Bán kính của mặt cầu đó bằng: \(R = IM = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( { - 3 - \left( { - 4} \right)} \right)}^2} + {{\left( {1 - 0} \right)}^2}} = \sqrt 3 \). Vậy phương trình mặt cầu đó là: \({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = {\left( {\sqrt 3 } \right)^2}\) hay \({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = 3\). c) Mặt cầu đường kính \(AB\) có tâm \(I\left( {0;0;3} \right)\) là trung điểm của \(AB\). Bán kính của mặt cầu đó bằng: \(R = IA = \sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {4 - 3} \right)}^2}} = \sqrt 2 \). Vậy phương trình mặt cầu đó là: \({x^2} + {y^2} + {\left( {z - 3} \right)^2} = {\left( {\sqrt 2 } \right)^2}\) hay \({x^2} + {y^2} + {\left( {z - 3} \right)^2} = 2\).
Quảng cáo
|