Giải bài 69 trang 70 sách bài tập toán 12 - Cánh diều

Lập phương trình của mặt cầu (left( S right)) trong mỗi trường hợp sau: a) (left( S right)) có tâm (Ileft( { - 2;3;8} right)) bán kính (R = 100); b) (left( S right)) có tâm (Ileft( {3; - 4;0} right)) và đi qua điểm (Mleft( {2; - 3;1} right)); c) (left( S right)) có đường kính là (AB) với (Aleft( { - 1;0;4} right)) và (Bleft( {1;0;2} right)).

Quảng cáo

Đề bài

Lập phương trình của mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau:

a) \(\left( S \right)\) có tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\);

b) \(\left( S \right)\) có tâm \(I\left( {3; - 4;0} \right)\) và đi qua điểm \(M\left( {2; - 3;1} \right)\);

c) \(\left( S \right)\) có đường kính là \(AB\) với \(A\left( { - 1;0;4} \right)\) và \(B\left( {1;0;2} \right)\).

Phương pháp giải - Xem chi tiết

‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Lời giải chi tiết

a) Phương trình của mặt cầu tâm \(I\left( { - 2;3;8} \right)\) bán kính \(R = 100\) là:

\({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = {100^2}\) hay \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 8} \right)^2} = 10000\).

b) Bán kính của mặt cầu đó bằng:

\(R = IM = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( { - 3 - \left( { - 4} \right)} \right)}^2} + {{\left( {1 - 0} \right)}^2}}  = \sqrt 3 \).

Vậy phương trình mặt cầu đó là:

\({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = {\left( {\sqrt 3 } \right)^2}\) hay \({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = 3\).

c) Mặt cầu đường kính \(AB\) có tâm \(I\left( {0;0;3} \right)\) là trung điểm của \(AB\).

Bán kính của mặt cầu đó bằng:

\(R = IA = \sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {4 - 3} \right)}^2}}  = \sqrt 2 \).

Vậy phương trình mặt cầu đó là:

\({x^2} + {y^2} + {\left( {z - 3} \right)^2} = {\left( {\sqrt 2 } \right)^2}\) hay \({x^2} + {y^2} + {\left( {z - 3} \right)^2} = 2\).

  • Giải bài 70 trang 70 sách bài tập toán 12 - Cánh diều

    Xác định vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x + 2}}{9} = \frac{{y - 1}}{{27}} = \frac{{z - 3}}{{ - 27}}\) và \({\Delta _2}:\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 7}}{3}\); b) \({\Delta _1}:\frac{{x + 1}}{{ - 2}} = \frac{{y - 6}}{5} = \frac{{z + 3}}{{ - 4}}\) và \({\Delta _2}:\frac{{x + 13}}{7} = \frac{{y + 9}}{5} = \frac{{z + 15}}{8}\); c) \({\Delta _1}:\frac{{x + 3}}{2} = \frac{{y + 6

  • Giải bài 71 trang 70 sách bài tập toán 12 - Cánh diều

    Tính góc giữa hai đường thẳng ({Delta _1}) và ({Delta _2}) (làm tròn kết quả đến hàng đơn vị của độ), biết ({Delta _1}:left{ begin{array}{l}x = 8 + sqrt 2 {t_1}\y = 9 - {t_1}\z = 10 + {t_1}end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = - 7 + {t_2}\y = - 9 + sqrt 2 {t_2}\z = 11 - {t_2}end{array} right.) (({t_1},{t_2}) là tham số).

  • Giải bài 72 trang 70 sách bài tập toán 12 - Cánh diều

    Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)) (làm tròn kết quả đến hàng đơn vị của độ), biết (Delta :left{ begin{array}{l}x = - 1 - 5t\y = 4 - 4t\z = - 1 + 3tend{array} right.) (với (t) là tham số) và (left( P right):3{rm{x}} + 4y + 5{rm{z}} + 60 = 0).

  • Giải bài 73 trang 71 sách bài tập toán 12 - Cánh diều

    Tính góc giữa hai mặt phẳng (left( {{P_1}} right)) và (left( {{P_2}} right)) (làm tròn kết quả đến hàng đơn vị), biết (left( {{P_1}} right):5x + 12y - 13z - 14 = 0) và (left( {{P_2}} right):13x - 5y - 12z + 7 = 0).

  • Giải bài 74 trang 71 sách bài tập toán 12 - Cánh diều

    Cho hai đường thẳng ({Delta _1}:left{ begin{array}{l}x = 1 + 4{t_1}\y = 9 + {t_1}\z = 1 - 6{t_1}end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = - 4 + 3{t_2}\y = 1 - 18{t_2}\z = - 5 - {t_2}end{array} right.) (({t_1},{t_2}) là tham số). Chứng minh rằng ({Delta _1} bot {Delta _2}).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close