Giải Bài 68 trang 88 sách bài tập Toán 6 - Cánh diềua) Có tồn tại số tự nhiên n để n2 + n+ 2 chia hết cho 5 hay không? b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp. Quảng cáo
Đề bài a) Có tồn tại số tự nhiên n để n2 + n+ 2 chia hết cho 5 hay không? b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp. Phương pháp giải - Xem chi tiết Xét các trường hợp của n khi chia cho 5 Lời giải chi tiết a) + Nếu n chia hết cho 5 thì n2 + n+ 2 chia cho 5 dư 2 ( vì n và n2 chia hết cho 5; 2 chia cho 5 dư 2). + Nếu n chia cho 5 dư 1 thì n2 + n+ 2 chia cho 5 dư 4 ( vì n và n2 chia cho 5 đều dư 1; 2 chia cho 5 dư 2). + Nếu n chia cho 5 dư 2 thì n2 + n+ 2 chia cho 5 dư 3 ( vì n chia cho 5 dư 2; n2 chia cho 5 dư 4 ; 2 chia cho 5 dư 2) + Nếu n chia cho 5 dư 3 thì n2 + n+ 2 chia cho 5 dư 4 ( vì n chia cho 5 dư 3; n2 chia cho 5 dư 4; 2 chia cho 5 dư 2) + Nếu n chia cho 5 dư 4 thì n2 + n+ 2 chia cho 5 dư 2 ( vì n chia cho 5 dư 4 ; n2 chia cho 5 dư 1; 2 chia cho 5 dư 2) Vậy không tồn tại số tự nhiên n để n2 + n+ 2 chia hết cho 5 b) n = a + (a+1) + (a+2) + (a+3) + (a+4) = 5a + 10 chia hết cho 5 n = b + (b+1) + (b+2) + (b+3) + (b+4) + (b+5) + (b+6) = 7b +21 chia hết cho 7 Nên n chia hết cho cả 5 và 7. Mà n là số tự nhiên nhỏ nhất , n lớn hơn 0 Vậy n = 35
Quảng cáo
|