Giải bài 62 trang 68 sách bài tập toán 12 - Cánh diều

Toạ độ tâm của mặt cầu (left( S right):{left( {x + 19} right)^2} + {left( {y - 20} right)^2} + {left( {z + 21} right)^2} = 22) là: A. (left( { - 19;20; - 21} right)). B. (left( {19;20; - 21} right)). C. (left( { - 19;20;21} right)). D. (left( {19;20;21} right)).

Quảng cáo

Đề bài

Toạ độ tâm của mặt cầu \(\left( S \right):{\left( {x + 19} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z + 21} \right)^2} = 22\) là:

A. \(\left( { - 19;20; - 21} \right)\).

B. \(\left( {19;20; - 21} \right)\).

C. \(\left( { - 19;20;21} \right)\).

D. \(\left( {19;20;21} \right)\).

Phương pháp giải - Xem chi tiết

Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).

Lời giải chi tiết

Mặt cầu \(\left( S \right):{\left( {x + 19} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z + 21} \right)^2} = 22\) có tâm \(I\left( { - 19;20; - 21} \right)\).

Chọn A.

  • Giải bài 63 trang 68 sách bài tập toán 12 - Cánh diều

    Cho (a + b + c ne 0). Khoảng cách từ gốc toạ độ (O) đến mặt phẳng (x + a + b + c = 0) bằng: A. (left| {a + b + c} right|). B. (frac{{left| {a + b + c} right|}}{{{a^2} + {b^2} + {c^2}}}). C. (frac{{sqrt {{a^2} + {b^2} + {c^2}} }}{{left| {a + b + c} right|}}). D. (frac{{left| {a + b + c} right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}).

  • Giải bài 64 trang 69 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho điểm (Ileft( {1;2;3} right)) và đường thẳng (Delta :frac{{x - 1}}{2} = frac{y}{1} = frac{{z + 1}}{{ - 1}}). Gọi (left( P right)) là mặt phẳng đi qua (I) và vuông góc với đường thẳng (Delta ). a) Nếu (overrightarrow u ) là một vectơ chỉ phương của đường thẳng (Delta ) thì (overrightarrow u ) là vectơ pháp tuyến của mặt phẳng (left( P right)). b) Vectơ có toạ độ (left( {2;1; - 1} right))

  • Giải bài 65 trang 69 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):x + 4y - 2z + 2 = 0,left( {{P_2}} right): - 2x + y + z + 3 = 0). a) Vectơ (overrightarrow {{n_1}} = left( {1;4; - 2} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ (overrightarrow {{n_2}} = left( {2;1;1} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_2}} right)). c) (overrightarrow {{n_1}} .overrightarrow {{n_2}}

  • Giải bài 66 trang 69 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai điểm (Aleft( {0;2;0} right)) và (Bleft( {2; - 4;0} right)). a) Trung điểm (I) của đoạn thẳng (AB) có toạ độ là (left( {1; - 1;0} right)). b) (AB = 40). c) Mặt cầu (left( S right)) tâm (A) và đi qua (B) có bán kính (R = sqrt {10} ). d) Phương trình mặt cầu (left( S right)) tâm (A) và đi qua (B) là: ({left( {x - 1} right)^2} + {left( {y + 2} right)^2} + {z^2} = 10).

  • Giải bài 67 trang 69 sách bài tập toán 12 - Cánh diều

    Cho bốn điểm \(A\left( {0;1;1} \right),B\left( { - 1;0;3} \right),C\left( {0;0;2} \right)\) và \(D\left( {1;1; - 2} \right)\). a) Tìm toạ độ của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\). b) Lập phương trình tham số của các đường thẳng \(AB\) và \(AC\). c) Lập phương trình tổng quát của mặt phẳng \(\left( {ABC} \right)\). d) Chứng minh rằng bốn điểm \(A,B,C,D\) không đồng phẳng. e) Tính khoảng cách từ điểm \(D\

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close