Giải bài 60 trang 25 sách bài tập toán 12 - Cánh diềuSố đường tiệm cận của đồ thị hàm số (y = frac{{{x^2} - 1}}{{{x^2} + 1}}) là: A. 1. B. 2. C. 3. D. 0. Quảng cáo
Đề bài Số đường tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - 1}}{{{x^2} + 1}}\) là: A. 1. B. 2. C. 3. D. 0. Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \) thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng. ‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang. Lời giải chi tiết Hàm số có tập xác định là \(\mathbb{R}\). Vậy hàm số không có tiệm cận đứng. Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 1}}{{{x^2} + 1}} = 1;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 1}}{{{x^2} + 1}} = 1\) Vậy \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho. Vậy hàm số có 1 đường tiệm cận. Chọn A.
Quảng cáo
|