Giải bài 50 trang 80 sách bài tập toán 11 - Cánh diều

Một chất điểm có phương trình chuyển động

Quảng cáo

Đề bài

Một chất điểm có phương trình chuyển động \(s\left( t \right) = 2\sin \left( {6t + \frac{\pi }{4}} \right),\)trong đó \(t > 0,{\rm{ }}t\) tính bằng giây, \(s\left( t \right)\) tính bằng centimét. Tính vận tốc tức thời và gia tốc tức thời của chất điểm tại thời điểm \(t = \frac{\pi }{4}\left( {\rm{s}} \right).\)

Phương pháp giải - Xem chi tiết

Vận tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right).\)

Gia tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là:\(s''\left( t \right).\)

Lời giải chi tiết

Vận tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là:

 \(v\left( t \right) = s'\left( t \right) = 12\cos \left( {6t + \frac{\pi }{4}} \right).\)

Vậy vận tốc tức thời và gia tốc tức thời của chất điểm tại thời điểm \(t = \frac{\pi }{4}\left( {\rm{s}} \right):\)

\(v\left( {\frac{\pi }{4}} \right) = s'\left( {\frac{\pi }{4}} \right) = 12\cos \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right) = 6\sqrt 2 \left( {{\rm{cm/s}}} \right).\)

Gia tốc tức thời của chất điểm tại thời điểm \(t\)là: \(s''\left( t \right) = v'\left( t \right) =  - 72\sin \left( {6t + \frac{\pi }{4}} \right).\)

Vậy gia tốc tức thời của chất điểm tại thời điểm \(t = \frac{\pi }{4}\left( {\rm{s}} \right):\)

\(s''\left( {\frac{\pi }{4}} \right) =  - 72\sin \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right) =  - 36\sqrt 2 \left( {{\rm{cm/}}{{\rm{s}}^{\rm{2}}}} \right).\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close