Giải bài 50 trang 80 sách bài tập toán 11 - Cánh diềuMột chất điểm có phương trình chuyển động Quảng cáo
Đề bài Một chất điểm có phương trình chuyển động \(s\left( t \right) = 2\sin \left( {6t + \frac{\pi }{4}} \right),\)trong đó \(t > 0,{\rm{ }}t\) tính bằng giây, \(s\left( t \right)\) tính bằng centimét. Tính vận tốc tức thời và gia tốc tức thời của chất điểm tại thời điểm \(t = \frac{\pi }{4}\left( {\rm{s}} \right).\) Phương pháp giải - Xem chi tiết Vận tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right).\) Gia tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là:\(s''\left( t \right).\) Lời giải chi tiết Vận tốc tức thời của chuyển động \(s = s\left( t \right)\) tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right) = 12\cos \left( {6t + \frac{\pi }{4}} \right).\) Vậy vận tốc tức thời và gia tốc tức thời của chất điểm tại thời điểm \(t = \frac{\pi }{4}\left( {\rm{s}} \right):\) \(v\left( {\frac{\pi }{4}} \right) = s'\left( {\frac{\pi }{4}} \right) = 12\cos \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right) = 6\sqrt 2 \left( {{\rm{cm/s}}} \right).\) Gia tốc tức thời của chất điểm tại thời điểm \(t\)là: \(s''\left( t \right) = v'\left( t \right) = - 72\sin \left( {6t + \frac{\pi }{4}} \right).\) Vậy gia tốc tức thời của chất điểm tại thời điểm \(t = \frac{\pi }{4}\left( {\rm{s}} \right):\) \(s''\left( {\frac{\pi }{4}} \right) = - 72\sin \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right) = - 36\sqrt 2 \left( {{\rm{cm/}}{{\rm{s}}^{\rm{2}}}} \right).\)
Quảng cáo
|