Giải bài 5 trang 29 sách bài tập toán 8 - Chân trời sáng tạo tập 2

Hai người đi xe máy khởi hành cùng một lúc từ hai thành phố A và B cách nhau 123km, đi ngược chiều nhau. Họ gặp nhau sau 1 giờ 30 phút. Tính tốc độ của mỗi người, biết tốc độ của người đi từ A nhỏ hơn tốc độ của người đi từ B là 2km/h.

Quảng cáo

Đề bài

Hai người đi xe máy khởi hành cùng một lúc từ hai thành phố A và B cách nhau 123km, đi ngược chiều nhau. Họ gặp nhau sau 1 giờ 30 phút. Tính tốc độ của mỗi người, biết tốc độ của người đi từ A nhỏ hơn tốc độ của người đi từ B là 2km/h.

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về các bước giải một bài toán bằng cách lập phương trình để giải bài:

Bước 1: Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số;

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

- Lập phương trình biểu diễn mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình.

Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết

Đổi: 1 giờ 30 phút\( = \frac{3}{2}\) giờ.

Gọi tốc độ của người khởi hành từ A là x (km/h). Điều kiện: \(x > 0\)

Tốc độ của người khởi hành từ B là: \(x + 2\left( {km/h} \right)\)

Quãng đường người khởi hành từ A đi được đến khi gặp nhau là: \(\frac{3}{2}x\left( {km} \right)\)

Quãng đường người khởi hành từ B đi được đến khi gặp nhau là: \(\frac{3}{2}\left( {x + 2} \right)\left( {km} \right)\)

Vì hai thành phố A và B cách nhau 123km nên ta có phương trình:

\(\frac{3}{2}x + \frac{3}{2}\left( {x + 2} \right) = 123\)

\(3x + 3 = 123\)

\(x = 40\) (thỏa mãn)

Vậy tốc độ của người đi từ A là 40km/h, tốc độ của người đi từ B là \(40 + 2 = 42\left( {km/h} \right)\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close