Giải bài 5 trang 12 Chuyên đề học tập Toán 12 - Cánh diềuHọc sinh khối 12 của một trường trung học phổ thông được chia thành các nhóm học tập. Chọn ngẫu nhiên một nhóm trong số các nhóm học tập đó. Gọi X là số học sinh trong nhóm được chọn ra. Biết rằng bảng phân bố xác suất của biến ngẫu nhiên rời rạc X là: Tính kì vọng, phương sai và độ lệch chuẩn của X. Quảng cáo
Đề bài Học sinh khối 12 của một trường trung học phổ thông được chia thành các nhóm học tập. Chọn ngẫu nhiên một nhóm trong số các nhóm học tập đó. Gọi X là số học sinh trong nhóm được chọn ra. Biết rằng bảng phân bố xác suất của biến ngẫu nhiên rời rạc X là: Tính kì vọng, phương sai và độ lệch chuẩn của X. Phương pháp giải - Xem chi tiết Áp dụng các công thức sau a) Kì vọng: \(E(X) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\) b) Phương sai: \(V(X) = {({x_1} - \mu )^2}{p_1} + {({x_2} - \mu )^2}{p_2} + ... + {({x_n} - \mu )^2}{p_n}\) c) Độ lệch chuẩn: \(\sigma (X) = \sqrt {V(X)} \) Lời giải chi tiết \(\begin{array}{l}E(X) = 1.0,15 + 2.0,2 + 3.0,3 + 4.0,2 + 5.0,1 + 6.0,05 = 3,05\\V(X) = {(1 - 3,05)^2}.0,15 + {(2 - 3,05)^2}.0,2 + {(3 - 3,05)^2}.0,3 + {(4 - 3,05)^2}.0,2 + {(5 - 3,05)^2}.0,1 + {(6 - 3,05)^2}.0,05\\V(X) = 1,8475\\\sigma (X) = \sqrt {V(X)} = \sqrt {1,8475} \approx 1,36\end{array}\)
Quảng cáo
|