Giải bài 5 trang 11 sách bài tập toán 12 - Cánh diều

Cho hàm số (y = frac{x}{{x - 1}}). Mệnh đề nào dưới đây là đúng?

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Cho hàm số \(y = \frac{x}{{x - 1}}\). Mệnh đề nào dưới đây là đúng?

A. Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

B. Hàm số nghịch biến trên \(\mathbb{R}\).

C. Hàm số đồng biến trên \(\mathbb{R}\).

D. Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

Phương pháp giải - Xem chi tiết

Các bước để tìm khoảng đồng biến, nghịch biến của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định của hàm số \(y = f\left( x \right)\).

Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.

Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có:

\({y^\prime } = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}} < 0,\forall x \ne 1\)

Bảng biến thiên của hàm số:

Vậy hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

Chọn D.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close