Giải bài 49 trang 23 sách bài tập toán 12 - Cánh diềuTiệm cận ngang của đồ thị hàm số (y = frac{{5{rm{x}} - 2}}{{x + 3}}) là đường thẳng: A. (x = - 3). B. (x = 5). C. (y = - 3). D. (y = 5). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Tiệm cận ngang của đồ thị hàm số \(y = \frac{{5{\rm{x}} - 2}}{{x + 3}}\) là đường thẳng: A. \(x = - 3\). B. \(x = 5\). C. \(y = - 3\). D. \(y = 5\). Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang. Lời giải chi tiết Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 3} \right\}\). Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{5{\rm{x}} - 2}}{{x + 3}} = 5;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{5{\rm{x}} - 2}}{{x + 3}} = 5\) Vậy \(y = 5\) là tiệm cận ngang của đồ thị hàm số đã cho. Chọn D.
Quảng cáo
|