Giải bài 48 trang 66 sách bài tập toán 12 - Cánh diều

Cho hai điểm (Ileft( { - 2;4;5} right)) và (Mleft( {1;2;7} right)). Mặt cầu tâm (I) đi qua điểm (M) có phương trình là: A. ({left( {x - 2} right)^2} + {left( {y + 4} right)^2} + {left( {z + 5} right)^2} = sqrt {17} ). B. ({left( {x + 2} right)^2} + {left( {y - 4} right)^2} + {left( {z - 5} right)^2} = sqrt {17} ). C. ({left( {x - 2} right)^2} + {left( {y + 4} right)^2} + {left( {z + 5} right)^2} = sqrt {17} ). D. ({left( {x + 2} right)^2} + {left( {

Quảng cáo

Đề bài

Cho hai điểm \(I\left( { - 2;4;5} \right)\) và \(M\left( {1;2;7} \right)\). Mặt cầu tâm \(I\) đi qua điểm \(M\) có phương trình là:

A. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = \sqrt {17} \).

B. \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = \sqrt {17} \).

C. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = \sqrt {17} \).

D. \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = 17\).

Phương pháp giải - Xem chi tiết

‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Lời giải chi tiết

Bán kính của mặt cầu đó bằng:

\(R = IM = \sqrt {{{\left( {1 - \left( { - 2} \right)} \right)}^2} + {{\left( {2 - 4} \right)}^2} + {{\left( {7 - 5} \right)}^2}}  = \sqrt {17} \).

Vậy phương trình mặt cầu đó là:

\({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = {\left( {\sqrt {17} } \right)^2}\) hay \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = 17\).

Chọn D.

  • Giải bài 49 trang 66 sách bài tập toán 12 - Cánh diều

    Cho hai điểm \(A\left( { - 12;3;7} \right)\) và \(B\left( { - 10; - 1;5} \right)\). Mặt cầu đường kính \(AB\) có phương trình là: A. \({\left( {x + 11} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 6\). B. \({\left( {x + 11} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = \sqrt {24} \). C. \({\left( {x + 11} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 36\). D. \({\left( {x - 11} \right)^2} + {\left( {y + 1} \right)^2}

  • Giải bài 50 trang 66 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai điểm (Mleft( {0; - 1;1} right)) và (Nleft( {4;1;5} right)). a) Mặt cầu đường kính (MN) có tâm là trung điểm của đoạn thẳng (MN). b) Nếu (I) là trung điểm của (MN) thì (Ileft( {2;0;6} right)). c) Bán kính của mặt cầu đường kính (MN) bằng 3. d) Phương trình mặt cầu đường kính (MN) là: ({left( {x - 2} right)^2} + {rm{ }}{y^2} + {left( {z - 3} right)^2} = 9).

  • Giải bài 51 trang 66 sách bài tập toán 12 - Cánh diều

    Cho mặt cầu \(\left( S \right)\) có phương trình: \({x^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = 49\). a) Xác định toạ độ tâm \({\rm{I}}\) và tính bán kính \({\rm{R}}\) của mặt cầu \(\left( S \right)\). b) Điểm \(A\left( {0;3; - 5} \right)\) có thuộc mặt cầu \(\left( S \right)\) hay không? c) Điểm \(B\left( {1; - 4; - 1} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \right)\)? d) Điểm \(C\left( {7;3; - 5} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \rig

  • Giải bài 52 trang 67 sách bài tập toán 12 - Cánh diều

    Lập phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau: a) \(\left( S \right)\) có tâm \(I\left( {3; - 4;5} \right)\) bán kính 9. b) \(\left( S \right)\) có tâm \(K\left( { - 4;6;7} \right)\) và đi qua điểm \(H\left( { - 5;4;5} \right)\). c) \(\left( S \right)\) có đường kính \(AB\) với \(A\left( {1;3; - 1} \right)\) và \(B\left( { - 1; - 1; - 5} \right)\).

  • Giải bài 53 trang 67 sách bài tập toán 12 - Cánh diều

    Cho mặt cầu \(\left( S \right)\) có tâm \(O\left( {0;0;0} \right)\) và bán kính 2. a) Lập phương trình mặt cầu \(\left( S \right)\). b) Lấy các điểm \(A\left( {1;0; - 1} \right)\) và \(B\left( {1;1;0} \right)\). Lập phương trình đường thẳng \(AB\). Tìm toạ độ các điểm \(C\) và \(D\) là giao điểm của đường thẳng \(AB\) và mặt cầu \(\left( S \right)\).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close