Giải bài 42 trang 22 sách bài tập toán 12 - Cánh diều

Một ô tô đang chạy với vận tốc (18m/s) thì người lái ô tô đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc (vleft( t right) = - 6t + 18left( {m/s} right)), trong đó (t) là thời gian tính bằng giây. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô di chuyển được quãng đường bằng bao nhiêu mét?

Quảng cáo

Đề bài

Một ô tô đang chạy với vận tốc \(18m/s\) thì người lái ô tô đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) =  - 6t + 18\left( {m/s} \right)\), trong đó \(t\) là thời gian tính bằng giây. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô di chuyển được quãng đường bằng bao nhiêu mét?

Phương pháp giải - Xem chi tiết

Sử dụng công thức: \(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\).

Lời giải chi tiết

Khi xe dừng hẳn, ta có: \(v\left( t \right) = 0\), tức là \( - 6t + 18 = 0\) hay \(t = 3\left( s \right)\).

Quãng đường mà ô tô di chuyển từ lúc đạp phanh đến khi dừng hẳn là:

\(\int\limits_0^3 {v\left( t \right)dt}  = \int\limits_0^3 {\left( { - 6t + 18} \right)dt}  = \left. {\left( { - 3{t^2} + 18t} \right)} \right|_0^3 = 27\left( m \right)\).

  • Giải bài 43 trang 22 sách bài tập toán 12 - Cánh diều

    Một vật chuyển động với vận tốc được cho bởi đồ thị ở Hình 3. a) Tính quãng đường mà vật di chuyển được trong 5 giây đầu tiên. b) Tính quãng đường mà vật di chuyển được từ thời điểm 1 giây đến 5 giây.

  • Giải bài 41 trang 22 sách bài tập toán 12 - Cánh diều

    Cho (intlimits_{ - 1}^3 {fleft( x right)dx} = 2,intlimits_2^3 {fleft( x right)dx} = - 5). Tính tích phân (intlimits_{ - 1}^2 {fleft( x right)dx} ).

  • Giải bài 40 trang 22 sách bài tập toán 12 - Cánh diều

    Cho (intlimits_{ - 2}^1 {fleft( x right)dx} = 5) và (intlimits_{ - 2}^1 {gleft( x right)dx} = - 4). Tính: a) (intlimits_1^{ - 2} {fleft( x right)dx} ); b) (intlimits_{ - 2}^1 { - 4fleft( x right)dx} ); c) (intlimits_{ - 2}^1 {frac{{ - 2gleft( x right)}}{3}dx} ); d) (intlimits_{ - 2}^1 {left[ {fleft( x right) + gleft( x right)} right]dx} ); e) (intlimits_{ - 2}^1 {left[ {fleft( x right) - gleft( x right)} right]dx} ); g) (intlimits_{ - 2}

  • Giải bài 39 trang 21 sách bài tập toán 12 - Cánh diều

    Cho (intlimits_{ - 1}^2 {gleft( x right)dx} = 6,Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên đoạn (left[ { - 1;2} right]) và (Gleft( { - 1} right) = 8). Tính (Gleft( 2 right)).

  • Giải bài 38 trang 21 sách bài tập toán 12 - Cánh diều

    Nêu một ví dụ chỉ ra rằng (intlimits_a^b {frac{{fleft( x right)}}{{gleft( x right)}}dx} ne frac{{intlimits_a^b {fleft( x right)dx} }}{{intlimits_a^b {gleft( x right)dx} }}) với (fleft( x right)) và (gleft( x right)) liên tục trên đoạn (left[ {a;b} right],gleft( x right) = 0,forall x in left[ {a;b} right]).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close