Giải bài 38 trang 21 sách bài tập toán 12 - Cánh diều

Nêu một ví dụ chỉ ra rằng (intlimits_a^b {frac{{fleft( x right)}}{{gleft( x right)}}dx} ne frac{{intlimits_a^b {fleft( x right)dx} }}{{intlimits_a^b {gleft( x right)dx} }}) với (fleft( x right)) và (gleft( x right)) liên tục trên đoạn (left[ {a;b} right],gleft( x right) = 0,forall x in left[ {a;b} right]).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

Nêu một ví dụ chỉ ra rằng \(\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx}  \ne \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}\) với \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right],g\left( x \right) = 0,\forall x \in \left[ {a;b} \right]\).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức:

• \(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\).

• \(\int {\frac{1}{x}dx}  = \ln \left| x \right| + C\).

Lời giải chi tiết

Lấy \(f\left( x \right) = 1,g\left( x \right) = x,a = 1,b = 2\). Ta có:

\(\begin{array}{l}\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx}  = \int\limits_1^2 {\frac{1}{x}dx}  = \left. {\ln \left| x \right|} \right|_1^2 = \ln \left| 2 \right| - \ln \left| 1 \right| = \ln 2\\\frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }} = \frac{{\int\limits_1^2 {1dx} }}{{\int\limits_1^2 {xdx} }} = \frac{{\left. x \right|_1^2}}{{\left. {\frac{{{x^2}}}{2}} \right|_1^2}} = \frac{{2 - 1}}{{\frac{{{2^2}}}{2} - \frac{{{1^2}}}{2}}} = \frac{2}{3}\end{array}\)

Vậy \(\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx}  \ne \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}\).

  • Giải bài 39 trang 21 sách bài tập toán 12 - Cánh diều

    Cho (intlimits_{ - 1}^2 {gleft( x right)dx} = 6,Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên đoạn (left[ { - 1;2} right]) và (Gleft( { - 1} right) = 8). Tính (Gleft( 2 right)).

  • Giải bài 40 trang 22 sách bài tập toán 12 - Cánh diều

    Cho (intlimits_{ - 2}^1 {fleft( x right)dx} = 5) và (intlimits_{ - 2}^1 {gleft( x right)dx} = - 4). Tính: a) (intlimits_1^{ - 2} {fleft( x right)dx} ); b) (intlimits_{ - 2}^1 { - 4fleft( x right)dx} ); c) (intlimits_{ - 2}^1 {frac{{ - 2gleft( x right)}}{3}dx} ); d) (intlimits_{ - 2}^1 {left[ {fleft( x right) + gleft( x right)} right]dx} ); e) (intlimits_{ - 2}^1 {left[ {fleft( x right) - gleft( x right)} right]dx} ); g) (intlimits_{ - 2}

  • Giải bài 41 trang 22 sách bài tập toán 12 - Cánh diều

    Cho (intlimits_{ - 1}^3 {fleft( x right)dx} = 2,intlimits_2^3 {fleft( x right)dx} = - 5). Tính tích phân (intlimits_{ - 1}^2 {fleft( x right)dx} ).

  • Giải bài 42 trang 22 sách bài tập toán 12 - Cánh diều

    Một ô tô đang chạy với vận tốc (18m/s) thì người lái ô tô đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc (vleft( t right) = - 6t + 18left( {m/s} right)), trong đó (t) là thời gian tính bằng giây. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô di chuyển được quãng đường bằng bao nhiêu mét?

  • Giải bài 43 trang 22 sách bài tập toán 12 - Cánh diều

    Một vật chuyển động với vận tốc được cho bởi đồ thị ở Hình 3. a) Tính quãng đường mà vật di chuyển được trong 5 giây đầu tiên. b) Tính quãng đường mà vật di chuyển được từ thời điểm 1 giây đến 5 giây.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close