Giải bài 41 trang 65 sách bài tập toán 12 - Cánh diềuPhương trình nào sau đây là phương trình mặt cầu? A. ({left( { - 3x - 1} right)^2} + {left( {y - 3} right)^2} + {left( {z - 4} right)^2} = {12^2}). B. ({x^2} + {left( {y + 5} right)^2} + {left( {7z - 9} right)^2} = {11^2}). C. ({left( {x - 2} right)^2} + {left( {5y - 1} right)^2} + {left( {z - 8} right)^2} = {19^2}). D. ({x^2} + {left( {y + 5} right)^2} + {left( {z - 18} right)^2} = {14^2}). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Phương trình nào sau đây là phương trình mặt cầu? A. \({\left( { - 3x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = {12^2}\). B. \({x^2} + {\left( {y + 5} \right)^2} + {\left( {7z - 9} \right)^2} = {11^2}\). C. \({\left( {x - 2} \right)^2} + {\left( {5y - 1} \right)^2} + {\left( {z - 8} \right)^2} = {19^2}\). D. \({x^2} + {\left( {y + 5} \right)^2} + {\left( {z - 18} \right)^2} = {14^2}\). Phương pháp giải - Xem chi tiết Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\). Lời giải chi tiết Phương trình \({x^2} + {\left( {y + 5} \right)^2} + {\left( {z - 18} \right)^2} = {14^2}\) là phương trình mặt cầu. Chọn D.
Quảng cáo
|