Giải bài 4 trang 12 vở thực hành Toán 8Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) và \(B = 3xyz - 2{x^2}y + x - 4\) . Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) và \(B = 3xyz - 2{x^2}y + x - 4\) . a) Tìm các đa thức \(A + B\) và \(A - B\) ; b) Tính giá trị của các đa thức A và \(A + B\) tại \(x = 0,5;y = - 2\) và \(z = 1\) . Phương pháp giải - Xem chi tiết a) Sử dụng quy tắc cộng (trừ) hai đa thức: Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức ấy bởi dấu “+” (hay dấu “-“) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được. b) Thay các giá trị \(x = 0,5;y = - 2\) và \(z = 1\) vào biểu thức để tính giá trị của đa thức A và \(A + B\) . Lời giải chi tiết a) \(\begin{array}{l}A + B = \left( {2{x^2}y + 3xyz - 2x + 5} \right) + \left( {3xyz - 2{x^2}y + x - 4} \right)\\ = 2{x^2}y + 3xyz - 2x + 5 + 3xyz - 2{x^2}y + x - 4\\ = \left( {2{x^2}y - 2{x^2}y} \right) + \left( {3xyz + 3xyz} \right) + \left( { - 2x + x} \right) + \left( {5 - 4} \right)\\ = 6xyz - x + 1\end{array}\) \(\begin{array}{l}A - B = \left( {2{x^2}y + 3xyz - 2x + 5} \right) - \left( {3xyz - 2{x^2}y + x - 4} \right)\\ = 2{x^2}y + 3xyz - 2x + 5 - 3xyz + 2{x^2}y - x + 4\\ = \left( {2{x^2}y + 2{x^2}y} \right) + \left( {3xyz - 3xyz} \right) + \left( { - 2x - x} \right) + \left( {5 + 4} \right)\\ = 4{x^2}y - 3x + 9\end{array}\) b) Tại \(x = 0,5;y = - 2\) và \(z = 1\) , ta có: \(\begin{array}{l}A = 2.{(0,5)^2}( - 2) + 3.0,5.( - 2).1 - 2.(0,5) + 5\\ = - 1 - 3 - 1 + 5\\ = 0\end{array}\) \(\begin{array}{l}A + B = 6.0,5.( - 2).1 - 0,5 + 1\\ = - 6 - 0,5 + 1\\ = - 5,5\end{array}\)
Quảng cáo
|