Giải bài 3.3 trang 33 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngTính giá trị của các biểu thức sau: Quảng cáo
Đề bài Cho góc \(\alpha \) thỏa mãn \({0^ \circ } < \alpha < {180^ \circ },\,\,\tan \alpha = 2.\) Tính giá trị của các biểu thức sau: a) \(G = 2\sin \alpha + \cos \alpha .\) b) \(H = \frac{{2\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}.\) Phương pháp giải - Xem chi tiết Tính \(\cos \alpha = \sqrt {\frac{1}{{1 + {{\tan }^2}\alpha }}} \) và \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } .\) Lời giải chi tiết Ta có: \({\cos ^2}\alpha = \frac{1}{{1 + {{\tan }^2}\alpha }} = \frac{1}{{1 + 4}} = \frac{1}{5}\,\, \Rightarrow \cos \alpha = \frac{{\sqrt 5 }}{5}.\) \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - \frac{1}{5}} = \frac{{2\sqrt 5 }}{5}.\) a) \(G = 2\sin \alpha + \cos \alpha = 2.\frac{{2\sqrt 5 }}{5} + \frac{{\sqrt 5 }}{5} = \frac{{5\sqrt 5 }}{5} = \sqrt 5 .\) b) \(H = \frac{{2\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }} = \frac{{\sqrt 5 }}{{\frac{{2\sqrt 5 }}{5} - \frac{{\sqrt 5 }}{5}}} = \frac{{\sqrt 5 }}{{\frac{{\sqrt 5 }}{5}}} = 5.\)
Quảng cáo
|