Giải bài 3 trang 87 vở thực hành Toán 8 tập 2

Cho AM, BN, CP là các đường trung tuyến của tam giác ABC. Cho A'M', B'N', C'P' là các đường trung tuyến của tam giác A'B'C'. Biết rằng ΔA’B’C’ ∽ ΔABC

Quảng cáo

Đề bài

Cho AM, BN, CP là các đường trung tuyến của tam giác ABC. Cho A'M', B'N', C'P' là các đường trung tuyến của tam giác A'B'C'. Biết rằng ΔA’B’C’  ΔABC 

Chứng minh rằng \(\frac{{A}'{M}'}{AM}=\frac{{B}'{N}'}{BN}=\frac{{C}'{P}'}{CP}\).

Phương pháp giải - Xem chi tiết

Chứng minh các tam giác đồng dạng và suy ra các tỉ số đồng dạng để chứng minh.

Lời giải chi tiết

Vì ΔA’B’C’ ∽ ΔABC nên: $\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$ (1), $\widehat{A'B'C'}=\widehat{ABC},\widehat{B'C'A'}=\widehat{BCA},\widehat{C'A'B'}=\widehat{CAB}$ (2).

Hai tam giác A’B’M’ và ABM có:

$\frac{B'M'}{BM}=\frac{\frac{B'C'}{2}}{\frac{BC}{2}}=\frac{B'C'}{BC}=\frac{B'A'}{BA}$ (theo (1)),

$\widehat{A'B'M'}=\widehat{A'B'C'}=\widehat{ABC}=\widehat{ABM}$

Suy ra $\Delta A'B'M'\backsim \Delta ABM$(c.g.c). Do đó $\frac{A'M'}{AM}=\frac{A'B'}{AB}$.

Tương tự, \(\Delta B'C'N'\backsim \Delta BCN\) và suy ra $\frac{B'N'}{BN}=\frac{B'C'}{BC},\Delta C'A'P'\backsim \Delta CAP$ và suy ra $\frac{C'P'}{CP}=\frac{A'C'}{AC}$. Từ các đẳng thức trên và (1) ta suy ra $\frac{A'M'}{AM}=\frac{B'N'}{BN}=\frac{C'P'}{CP}$.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close