Giải bài 3 trang 48 vở thực hành Toán 8

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C

Quảng cáo

Đề bài

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.

Phương pháp giải - Xem chi tiết

Chứng minh AC = AF + CF = BF + DF = BD suy ra ABCD là hình thang cân vì có hai đường chéo bằng nhau.

Lời giải chi tiết

Ta có EC = ED nên tam giác ECD cân tại E, suy ra \(\widehat {{D_2}} = \widehat {{C_2}}\) (1)

Do AC CE, BD  DE nên \(\widehat {{D_2}} = \widehat {{D_2}} = \widehat {BDE} = {90^0}\),

\(\widehat {{C_1}} + \widehat {{C_2}} = \widehat {ACE} = {90^0}\) (2)

Gọi F là giao điểm của AC và BD.

Từ (1) và (2) suy ra \(\widehat {{D_1}} = \widehat {{C_1}} \Rightarrow \Delta DCF\) cân tại F.

\( \Rightarrow DF = FC\)  (3)

Do AB // CD nên \(\widehat {{D_1}} = \widehat {{B_1}},\widehat {{C_1}} = \widehat {{A_1}}\) (hai góc so le trong).

\( \Rightarrow \widehat {{A_1}} = \widehat {{B_1}} \Rightarrow \Delta ABF\) cân tại F.

\( \Rightarrow {\rm{AF}} = BF\) (4)

Từ (3) và (4) suy ra AC = AF + CF = BF + DF = BD.

Suy ra hình thang ABCD có hai đường chéo bằng nhau nên nó là hình thang cân.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close