Giải bài 3 trang 23 SGK Toán 8 tập 1 - Cánh diều

Viết mỗi biểu thức sau dưới dạng tích:

Quảng cáo

Đề bài

Viết mỗi biểu thức sau dưới dạng tích:

a) \(25{{\rm{x}}^2} - 16\)                         

b) \(8{{\rm{x}}^3} + 1\)                       

c) \(8{{\rm{x}}^3} - 125\)                       

d) \(27{{\rm{x}}^3} - {y^3}\)               

e) \(16{{\rm{a}}^2} - 9{b^2}\)   

g) \(125{{\rm{x}}^3} + 27{y^3}\)       

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng các công thức hiệu hai bình phương, tổng, hiệu hai lập phương để viết các biểu thức dưới dạng tích.

Lời giải chi tiết

a) \(25{{\rm{x}}^2} - 16 = {\left( {5{\rm{x}}} \right)^2} - {4^2} = \left( {5{\rm{x}} + 4} \right)\left( {5{\rm{x}} - 4} \right)\)

b) \(8{{\rm{x}}^3} + 1 = {\left( {2{\rm{x}}} \right)^3} + {1^3} = \left( {2{\rm{x}} + 1} \right)\left( {4{{\rm{x}}^2} - 2{\rm{x}} + 1} \right)\)

c) \(8{{\rm{x}}^3} - 125 = {\left( {2{\rm{x}}} \right)^3} - {5^3} = \left( {2{\rm{x}} - 5} \right)\left( {4{{\rm{x}}^2} + 10{\rm{x + }}25} \right)\)

d) \(27{{\rm{x}}^3} - {y^3} = {\left( {3x} \right)^3} - {y^3} = \left( {3{\rm{x}} - y} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}}y + {y^2}} \right)\) 

e) \(16{{\rm{a}}^2} - 9{b^2} = {\left( {4{\rm{a}}} \right)^2} - {\left( {3b} \right)^2} = \left( {4{\rm{a}} - 3b} \right)\left( {4{\rm{a}} + 3b} \right)\)

g) \(125{{\rm{x}}^3} + 27{y^3} = {\left( {5{\rm{x}}} \right)^3} + {\left( {3y} \right)^3} = \left( {5{\rm{x}} + 3y} \right)\left( {25{{\rm{x}}^2} - 15{\rm{x}}y + 9{y^2}} \right)\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close