Giải bài 25 trang 50 sách bài tập toán 11 - Cánh diềuTìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng là 480. Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng là 480. Phương pháp giải - Xem chi tiết Gọi năm số hạng liên tiếp của cấp số cộng cần tìm là \({u_1},{u_2},{u_3},{u_4},{u_5}\). Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 40\\u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = 480\end{array} \right.\) Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) để đưa về hệ phương trình ẩn \({u_1}\) và \(d\). Lời giải chi tiết Gọi năm số hạng liên tiếp của cấp số cộng cần tìm là \({u_1},{u_2},{u_3},{u_4},{u_5}\). Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 40\\u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = 480\end{array} \right.\) Do \({u_n} = {u_1} + \left( {n - 1} \right)d\), nên ta có: \({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = {u_1} + {u_1} + d + {u_1} + 2d + {u_1} + 3d + {u_1} + 4d = 5{u_1} + 10d\) Ta suy ra \(5{u_1} + 10d = 40 \Leftrightarrow {u_1} + 2d = 8 \Leftrightarrow {u_1} = 8 - 2d\) (1) Mặt khác, ta lại có: \(u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = u_1^2 + {\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 2d} \right)^2} + {\left( {{u_1} + 3d} \right)^2} + {\left( {{u_1} + 4d} \right)^2}\) \( = 5u_1^2 + 20{u_1}d + 30{d^2}\) Ta suy ra \(5u_1^2 + 20{u_1}d + 30{d^2} = 480 \Leftrightarrow u_1^2 + 4{u_1}d + 6{d^2} = 96\) (2) Từ (1) và (2) ta suy ra \({\left( {8 - 2d} \right)^2} + 4d\left( {8 - 2d} \right) + 6{d^2} = 96 \Leftrightarrow 4{d^2} - 32d + 64 + 32d - 8{d^2} + 6{d^2} = 96\) \( \Leftrightarrow 2{d^2} = 32 \Leftrightarrow d = \pm 4\). Với \(d = - 4\), ta suy ra \({u_1} = 16\). Từ đó năm số hạng liên tiếp cần tìm là 16, 12, 8, 4, 0. Với \(d = 4\), ta suy ra \({u_1} = 0\). Từ đó năm số hạng liên tiếp cần tìm là 0, 4, 8, 12, 16. Vậy năm số hạng liên tiếp của cấp số cộng cần tìm là 0, 4, 8, 12, 16.
Quảng cáo
|