Giải bài 2.4 trang 19 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

Quảng cáo

Đề bài

Cho bất phương trình \(x + 2y \ge  - 4.\)

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

b) Miền nghiệm có chứa bao nhiêu điểm \(\left( {x;y} \right)\) với \(x,\,\,y\) là các số nguyên âm?

Phương pháp giải - Xem chi tiết

- Vẽ đường thẳng \(d:x + 2y = -4\) trên mặt phẳng tọa độ \(Oxy.\)

- Xác định miền nghiệm của bất phương trình \(x + 2y \ge  - 4.\)

- Xác định các điểm có \(x,\,\,y\) là các số nguyên âm

Lời giải chi tiết

a) Ta biểu diễn miền nghiệm của bất phương trình như sau:

Vẽ đường thẳng \(d:x + 2y = -4\) trên mặt phẳng tọa độ \(Oxy.\)

Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \(d\) và thay vào biểu thức \(x + 2y,\) ta được \(0 + 2.0 = 0 < 4.\)

=> O thuộc miền nghiệm

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ \(d\) và chứa điểm \(O.\)

 

b) Các điểm \(\left( {x;y} \right)\) là: \(\left( { - 1; - 1} \right),\,\,\left( { - 2; - 1} \right).\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close