Giải bài 23 trang 92 sách bài tập Toán 6 – Cánh Diều Tập 2Cho 20 điểm phân biệt, trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điềm nào thẳng hàng. Cứ qua 2 điểm ta vẽ được một đường thẳng. Hỏi từ 20 điểm đó vẽ được tất cả bao nhiêu đường thẳng? Quảng cáo
Đề bài Cho 20 điểm phân biệt, trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điềm nào thẳng hàng. Cứ qua 2 điểm ta vẽ được một đường thẳng. Hỏi từ 20 điểm đó vẽ được tất cả bao nhiêu đường thẳng? Phương pháp giải - Xem chi tiết Với m điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số các đường thẳng kẻ được là \(\frac{{m.(m - 1)}}{2}\) Qua n điểm thẳng hàng có duy nhất một đường thẳng Lời giải chi tiết Với 20 điểm phân biệt, nếu trong đó không có 3 điểm nào thẳng hàng thì số các đường thẳng kẻ được là \(\frac{{20.(20 - 1)}}{2} = 190\) Tuy nhiên, trong 20 điểm phân biệt đó, có 6 điểm thẳng hàng đã bị tính là không có 3 điểm nào thẳng hàng. Khi trong 6 điểm không có điểm nào thẳng hàng thì số đường thẳng tạo thành là: \(\frac{{6.5}}{2} = 15\) Khi 6 điểm đó thẳng hàng thì số đường thẳng tạo thành là: 1 Vậy từ 20 điểm phân biệt, trong đó có đúng 6 điểm thẳng hàng thì số đường thẳng tạo thành là: \(190 - 15 + 1 = 176\) (đường thẳng)
Quảng cáo
|