Bài 23 trang 24 Vở bài tập toán 6 tập 2

Giải bài 23 trang 24, 25 VBT toán 6 tập 2. Rút gọn rồi quy đồng mẫu các phân số ...

Quảng cáo

Đề bài

Rút gọn rồi quy đồng mẫu các phân số:

a) \(\displaystyle {{ - 15} \over {90}},{{120} \over {600}},{{ - 75} \over {150}};\) 

b) \(\displaystyle {{54} \over { - 90}},{{ - 180} \over {288}},{{60} \over { - 135}}\).

Phương pháp giải - Xem chi tiết

Quy tắc rút gọn một phân số, ta chia cả tử và mẫu của phân số cho một ước chung (khác 1 và -1) của chúng.

Quy tắc quy đồng mẫu nhiều phân số: 

Muốn quy đồng mẫu nhiều phân số với mẫu dương ta làm như sau:

Bước 1: Tìm bội chung của các mẫu (thường là BCNN) để làm mẫu chung.

Bước 2: Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu). 

Bước 3: Nhân cả tử và mẫu của mỗi phân số với thừa số phụ tương ứng.

Lời giải chi tiết

a)

\( \displaystyle\begin{array}{l}
\dfrac{{ - 15}}{{90}} = \dfrac{{ - 15:15}}{{90:15}} = \dfrac{{ - 1}}{6};\\
\dfrac{{120}}{{600}} = \dfrac{{120:120}}{{600:120}} = \dfrac{1}{5};\\
\dfrac{{ - 75}}{{150}} = \dfrac{{ - 75:75}}{{150:75}} = \dfrac{{ - 1}}{2}
\end{array}\)

\(BCNN(6,5,2) = 30\)

\( \displaystyle\eqalign{
& \dfrac{{ - 15}}{{90}} ={{ - 1} \over 6} = {{\left( { - 1} \right).5} \over {6.5}} = {{ - 5} \over {30}} \cr 
& \dfrac{{120}}{{600}} ={1 \over 5} = {{1.6} \over {5.6}} = {6 \over {30}} \cr 
& \dfrac{{ - 75}}{{150}} ={{ - 1} \over 2} = {{\left( { - 1} \right).15} \over {2.15}} = {{ - 15} \over {30}} \cr} \)

b)

\( \displaystyle\begin{array}{l}
\dfrac{{54}}{{ - 90}} = \dfrac{{54:\left( { - 18} \right)}}{{ - 90:\left( { - 18} \right)}} = \dfrac{{ - 3}}{5};\\
\dfrac{{ - 180}}{{288}} = \dfrac{{ - 180:36}}{{288:36}} = \dfrac{{ - 5}}{8};\\
\dfrac{{ 60}}{{-135}} = \dfrac{{ 60:(-15)}}{{-135:(-15)}} = \dfrac{{ - 4}}{9}
\end{array}\)

\(BCNN(5,8,9) = 360\)

\( \displaystyle\eqalign{
& \dfrac{{54}}{{ - 90}} ={-3 \over 5} = {{(-3).8.9} \over {5.8.9}} = {{-216} \over {360}} \cr 
& \dfrac{{ - 180}}{{288}} ={{ - 5} \over 8} = {{\left( { - 5} \right).5.9} \over {8.5.9}} = {{ - 225} \over {360}} \cr 
& \dfrac{{ 60}}{{-135}} = {{ - 4} \over 9} = {{\left( { - 4} \right).8.5} \over {9.8.5}} = {{ - 160} \over {360}} \cr} \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close