Bài 18 trang 98 Vở bài tập toán 9 tập 2Giải bài 18 trang 98 VBT toán 9 tập 2. Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Tiếp tuyến A của đường tròn (O’) cắt đường tròn (O) tại điểm thứ hai P. Tia PB cắt đường tròn (O’) tại Q... Quảng cáo
Đề bài Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến \(A\) của đường tròn \((O’)\) cắt đường tròn \((O)\) tại điểm thứ hai \(P\). Tia \(PB\) cắt đường tròn \((O’)\) tại \(Q\). Chứng minh đường thẳng \(AQ\) song song với tiếp tuyến tại \(P\) của đường tròn \((O)\). Phương pháp giải - Xem chi tiết Sử dụng : Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. Lời giải chi tiết Đối với đường tròn \(\left( O \right)\) ta có \(\widehat {PAB} = \widehat {BPx}\) vì \(\widehat {PAB}\) là góc nội tiếp chắn cung \(PB\) và \(\widehat {BPx}\) là góc tạo bởi tiếp tuyến và dây cung \(BP\) (1) Đối với đường tròn \(\left( {O'} \right)\), ta có: \(\widehat {AQB} = \widehat {PAB}\) vì \(\widehat {AQB}\) là góc nội tiếp chắn cung \(AB\) và \(\widehat {PAB}\) là góc tạo bởi tiếp tuyến và dây cung \(AB\) (2) Vậy từ (1) và (2) \( \Rightarrow \widehat {BPx} = \widehat {ABQ}\) nên \(AQ//Px\) vì hai góc so le trong bằng nhau. Loigiaihay.com
Quảng cáo
|