Giải bài 1.50 trang 30 SGK Toán 8 - Cùng khám pháCho hai đa thức Quảng cáo
Đề bài Cho hai đa thức \(A = {x^2} - xy + 2{y^2}\) và \(B = 2{x^2} + xy + {y^2}\) a) Tìm đa thức C sao cho \(C = A + B\) b) Tìm đa thức D sao cho \(D = A - B\) c) Tìm đa thức E sao cho \(E = A.B\). Phương pháp giải - Xem chi tiết Áp dụng các phương pháp cộng, trừ, nhân đa thức để tìm được các đa thức C, D, E. Lời giải chi tiết a) \(\begin{array}{l}C = A + B\\C = \left( {{x^2} - xy + 2{y^2}} \right) + \left( {2{x^2} + xy + {y^2}} \right)\\C = \left( {{x^2} + 2{x^2}} \right) + \left( { - xy + xy} \right) + \left( {2{y^2} + {y^2}} \right)\\C = 3{x^2} + 3{y^2}\end{array}\) b) \(\begin{array}{l}D = A - B\\D = \left( {{x^2} - xy + 2{y^2}} \right) - \left( {2{x^2} + xy + {y^2}} \right)\\D = \left( {{x^2} - 2{x^2}} \right) + \left( { - xy - xy} \right) + \left( {2{y^2} - {y^2}} \right)\\D = - {x^2} - 2xy + {y^2}\end{array}\) c) \(\begin{array}{l}E = A.B\\E = \left( {{x^2} - xy + 2{y^2}} \right).\left( {2{x^2} + xy + {y^2}} \right)\\E = {x^2}.\left( {2{x^2} + xy + {y^2}} \right) - xy.\left( {2{x^2} + xy + {y^2}} \right) + 2{y^2}.\left( {2{x^2} + xy + {y^2}} \right)\\E = 2{x^4} + {x^3}y + {x^2}{y^2} - 2{x^3}y - {x^2}{y^2} - x{y^3} + 4{x^2}{y^2} + 2x{y^3} + 2{y^4}\\E = 2{x^4} + \left( {{x^3}y - 2{x^3}y} \right) + \left( {{x^2}{y^2} - {x^2}{y^2} + 4{x^2}{y^2}} \right) - x{y^3} + 2x{y^3} + 2{y^4}\\E = 2{x^4} - {x^3}y + 4{x^2}{y^2} - x{y^3} + 2x{y^3} + 2{y^4}\end{array}\)
Quảng cáo
|