Giải bài 1.42 trang 29 SGK Toán 8 - Cùng khám phá

Chứng minh rằng

Quảng cáo

Đề bài

Chứng minh rằng \({9^n} - 1\) chia hết cho \({3^n} - 1\) với mọi số nguyên dương \(n\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp phân tích đa thức thành nhân tử đã học để tính.

Lời giải chi tiết

\({9^n} - 1 = {3^{2n}} - 1 = {\left( {{3^n}} \right)^2} - 1 = \left( {{3^n} - 1} \right)\left( {{3^n} + 1} \right)\)

Vậy  \(\left( {{3^n} - 1} \right)\left( {{3^n} + 1} \right)\) chia hết cho \(\left( {{3^n} - 1} \right)\)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close