Giải bài 14 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạoĐầu mỗi năm ông Hải đều gửi tiết kiệm 500 triệu đồng vào ngân hàng với hình thức lãi kép kì hạn một năm. Tìm số tiền ông Hải có được sau 5 năm, nếu lãi suất của ngân hàng là: a) 8%/năm; b) 14%/năm. Quảng cáo
Đề bài Đầu mỗi năm ông Hải đều gửi tiết kiệm 500 triệu đồng vào ngân hàng với hình thức lãi kép kì hạn một năm. Tìm số tiền ông Hải có được sau 5 năm, nếu lãi suất của ngân hàng là: a) 8%/năm. b) 14%/năm. Phương pháp giải - Xem chi tiết Giá trị cả vốn lẫn lãi sau \(n\) chu kì lãi kép: \({F_n} = P{\left( {1 + r} \right)^n}\) (với \(P\): vốn gốc, \(r\): lãi suất trên một kì hạn, \(n\): số kì hạn). Lời giải chi tiết Với \(P\): vốn gốc, \(r\): lãi suất trên một kì hạn, \(n\): số kì hạn Số tiền ông Hải có được sau năm đầu tiên là: \({F_1} = P\left( {1 + r} \right)\) Số tiền ông Hải có được sau năm thứ hai là: \({F_2} = \left[ {P\left( {1 + r} \right) + P} \right]\left( {1 + r} \right) = P\left( {1 + r} \right) + P{\left( {1 + r} \right)^2}\) Số tiền ông Hải có được sau năm thứ ba là: \({F_3} = \left[ {P{{\left( {1 + r} \right)}^2} + P\left( {1 + r} \right) + P} \right]\left( {1 + r} \right) = P\left( {1 + r} \right) + P{\left( {1 + r} \right)^2} + P{\left( {1 + r} \right)^3}\) … Số tiền ông Hải có được sau năm thứ \(n\) là: \({F_n} = P\left( {1 + r} \right) + P{\left( {1 + r} \right)^2} + P{\left( {1 + r} \right)^3} + ... + P{\left( {1 + r} \right)^n} = P\left( {1 + r} \right).\frac{{1 - {{\left( {1 + r} \right)}^n}}}{{1 - \left( {1 + r} \right)}} = P\left( {1 + r} \right).\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r}\) a) Số tiền ông Hai có được sau 5 năm với lãi suất 8%/năm là: \(F = 500\left( {1 + 8\% } \right).\frac{{{{\left( {1 + 8\% } \right)}^5} - 1}}{{8\% }} \approx 3167,965\) (triệu đồng). b) Số tiền ông Hai có được sau 5 năm với lãi suất 14%/năm là: \(F = 500\left( {1 + 14\% } \right).\frac{{{{\left( {1 + 14\% } \right)}^5} - 1}}{{14\% }} \approx 3767,759\) (triệu đồng).
Quảng cáo
|