Giải bài 1.28 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thứcTrong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 5 = 0. Quảng cáo
Đề bài Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ \(\vec u\left( { - 3;\,4} \right)\). Phương pháp giải - Xem chi tiết Cho vectơ \(\overrightarrow u \), phép tịnh tiến theo vectơ \(\overrightarrow u \) là phép biến hình biến điểm M thành điểm M’ sao cho \(\overrightarrow {MM'} = \overrightarrow u \). Nếu \(M'(x';y')\) là ảnh của \(M(x;y)\) qua phép tịnh tiến \({T_{\overrightarrow u }}\) , \(\overrightarrow u = \left( {a;\,b} \right)\) thì biểu thức tọa độ của phép tịnh tiến là \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\) Lời giải chi tiết Cách 1: Lấy A(0; 5), B(1; 7) thuộc đường thẳng d. Gọi A', B' tương ứng là ảnh của A, B qua phép tịnh tiến theo vectơ \(\vec u\left( { - 3;\,4} \right)\) Khi đó: \(\overrightarrow {AA'} = \overrightarrow u \) và \(\overrightarrow {BB'} = \overrightarrow u \).Suy ra A'(– 3; 9) và B'(– 2; 11). Vì đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ \(\vec u\left( { - 3;\,4} \right)\) nên hai điểm A', B' thuộc đường thẳng d'. Ta có: \(\overrightarrow {A'B'} = \left( {1;\,2} \right)\), suy ra đường thẳng d' có một vectơ pháp tuyến là \(\vec n = \left( {2;\, - 1} \right)\). Phương trình đường thẳng d' là \(2\left( {x + 3} \right)-\left( {y-9} \right) = 0 \Leftrightarrow 2x-y + 15 = 0.\) Cách 2: Gọi M(x; y) thuộc đường thẳng d và M'(x'; y') là ảnh của điểm M qua phép tịnh tiến theo vectơ \(\vec u\left( { - 3;\,4} \right)\). Khi đó \(\overrightarrow {MM'} = \vec u\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x' - x = - 3}\\{y' - y = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = x' + 3}\\{y = y' - 4}\end{array}} \right.\) Ta có \(M \in \Delta \; \Leftrightarrow \;2x-y + 5 = 0\; \Leftrightarrow \;2\left( {x' + 3} \right)-\left( {y'-4} \right) + 5 = 0\; \Leftrightarrow \;2x'-y' + 15 = 0.\) Do đó, M'(x'; y') thuộc đường thẳng có phương trình 2x – y + 15 = 0. Vì đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ \(\vec u\left( { - 3;\,4} \right)\) nên M' thuộc đường thẳng d'. Vậy phương trình đường thẳng d' là 2x – y + 15 = 0.
Quảng cáo
|