Giải bài 1.11 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thứcSơn và Tùng thi đấu bóng bàn với nhau. Trận đấu gồm 5 ván độc lập. Xác suất thắng của Sơn trong mỗi ván là (frac{1}{4}). Biết rằng mỗi ván không có kết quả hòa. Người thắng trận đấu nếu thắng ít nhất 3 ván đấu. a) Gọi X là số trận thắng của Sơn. Hỏi X là biến ngẫu nhiên có phân bố xác suất gì? b) Tính xác suất để Sơn thắng Tùng trong trận đấu. Quảng cáo
Đề bài Sơn và Tùng thi đấu bóng bàn với nhau. Trận đấu gồm 5 ván độc lập. Xác suất thắng của Sơn trong mỗi ván là \(\frac{1}{4}\). Biết rằng mỗi ván không có kết quả hòa. Người thắng trận đấu nếu thắng ít nhất 3 ván đấu. a) Gọi X là số trận thắng của Sơn. Hỏi X là biến ngẫu nhiên có phân bố xác suất gì? b) Tính xác suất để Sơn thắng Tùng trong trận đấu. Phương pháp giải - Xem chi tiết Áp dụng chú ý về phân bố nhị thức ta tính được xác suất cần tìm Lời giải chi tiết a) X là biến ngẫu nhiên có phân bố xác suất nhị thức với tham số \(n = 5;p = \frac{1}{4}\). b) Sơn thắng Tùng trong trận đấu tức là X ≥ 3. Theo chú ý về phân bố nhị thức ta có: \(\begin{array}{l}P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)\\{\rm{ = }}C_5^3{\left( {\frac{1}{4}} \right)^3}{\left( {\frac{3}{4}} \right)^2} + C_5^4{\left( {\frac{1}{4}} \right)^4}{\left( {\frac{3}{4}} \right)^1} + C_5^5{\left( {\frac{1}{4}} \right)^5}{\left( {\frac{3}{4}} \right)^0} \approx 0,1035\end{array}\)
Quảng cáo
|