Giải Bài 10 trang 69 sách bài tập toán 7 - Cánh diềuỞ Hình 6 có \(\hat A = \hat B = 60^\circ \) và Cx là tia phân giác của góc ACy. Chứng minh Cx song song với AB. Quảng cáo
Đề bài Ở Hình 6 có \(\hat A = \hat B = 60^\circ \) và Cx là tia phân giác của góc ACy. Chứng minh Cx song song với AB. Phương pháp giải - Xem chi tiết Chứng minh: \(\widehat {B{}_1} = \widehat {{C_1}}\) suy ra Cx // AB (vì hai góc đồng vị bằng nhau) Lời giải chi tiết Vì \(\widehat {ACy}\) là góc ngoài của ∆ABC tại đỉnh C nên \(\widehat {ACy} = \hat A + \hat B\). Do đó \(\widehat {ACy} = 60^\circ + 60^\circ = 120^\circ \) Vì Cx là tia phân giác của góc ACy nên \({\hat C_1} = {\hat C_2} = \frac{{\widehat {ACy}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \) Suy ra \(\hat B = {\hat C_1}\) (cùng bằng 60°), mà chúng ở vị trí đồng vị nên Cx // AB. Vậy Cx // AB.
Quảng cáo
|