Giải bài 10 trang 30 Chuyên đề học tập Toán 10 – Cánh diềuGiả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/ năm. Hết năm đầu, cô Hạnh không rút tiền ra và gửi thêm A (đồng) nữa Quảng cáo
Đề bài Giả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/ năm. Hết năm đầu, cô Hạnh không rút tiền ra và gửi thêm A (đồng) nữa. Hết năm thứ hai, cô Hạnh cũng không rút tiền ra và lại gửi thêm A (đồng) nữa. Cứ tiếp tục như vậy cho những năm sau. Chứng minh số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là \({T_n} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^n} - 1} \right]\) (đồng), nếu trong khoảng thời gian này lãi suất không đổi. Lời giải chi tiết Ta chứng minh “Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là \({T_n} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^n} - 1} \right]\) (đồng)” bằng phương pháp quy nạp. Bước 1: Khi \(n = 1\) ta có Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau 1 năm là: \(A + r\% .A = A.\left( {1 + \frac{r}{{100}}} \right) = \frac{{A(100 + r)}}{{100}}\)(đồng) Và \({T_1} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^1} - 1} \right] = \frac{{A(100 + r)}}{r}.\frac{r}{{100}} = \frac{{A(100 + r)}}{{100}}\)(đồng) Như vậy mệnh đề đúng với \(n = 1\) Bước 2: Với k là một số nguyên dương tùy ý mà mệnh đề đúng, ta phải chứng minh mệnh đề đúng với k+1, tức là: “Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau \(k + 1\) năm là: \({T_{k + 1}} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^{k + 1}} - 1} \right]\) (đồng)” Thật vậy, theo giả thiết quy nạp ta có: Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau \(k\) năm là: \({T_k} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^k} - 1} \right]\) (đồng) Cô không rút ra mà gửi thêm A đồng nữa => Số tiền gốc sau \(k + 1\) năm là: \({T_k} + A\)(đồng) => Số tiền lãi sau \(k + 1\) năm là: \(\left( {{T_k} + A} \right).r\% \)(đồng) Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau \(k + 1\) năm là: \(\begin{array}{l}{T_k} + A + \left( {{T_k} + A} \right).r\% = \left( {{T_k} + A} \right).(1 + r\% ) = \left( {{T_k} + A} \right)\left( {1 + \frac{r}{{100}}} \right)\\ = \left\{ {\frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^k} - 1} \right] + A} \right\}.\left( {1 + \frac{r}{{100}}} \right)\\ = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^k} - 1} \right].\left( {1 + \frac{r}{{100}}} \right) + A.\left( {1 + \frac{r}{{100}}} \right)\\ = \frac{{A(100 + r)}}{r}.\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^{k + 1}} - \left( {1 + \frac{r}{{100}}} \right)} \right] + A.\left( {\frac{{100 + r}}{{100}}} \right)\\ = \frac{{A(100 + r)}}{r}.\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^{k + 1}} - \left( {1 + \frac{r}{{100}}} \right)} \right] + A.\left( {\frac{{100 + r}}{r}} \right).\frac{r}{{100}}\\ = \frac{{A(100 + r)}}{r}.\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^{k + 1}} - \left( {1 + \frac{r}{{100}}} \right) + \frac{r}{{100}}} \right]\\ = \frac{{A(100 + r)}}{r}.\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^{k + 1}} - 1} \right]\end{array}\) Vậy mệnh đề đúng với k+1. Do đó, theo nguyên lí quy nạp toán học, mệnh đề đúng với mọi \(n \in \mathbb{N}*\).
Quảng cáo
|