TUYENSINH247 LÌ XÌ +100% TIỀN NẠP

X2 TIỀN NẠP TÀI KHOẢN HỌC TRỰC TUYẾN NGÀY 18-20/2

Chỉ còn 1 ngày
Xem chi tiết

Đề số 3 - Đề thi vào lớp 10 môn Toán

Đề thi vào lớp 10 môn Toán - Đề số 3 có đáp án và lời giải chi tiết

Quảng cáo

Đề bài

Câu 1. (2,0 điểm)

1. Tính giá trị của các biểu thức

M=36+25M=36+25                               

N=(51)25N=(51)25

2. Cho biểu thức P=1+xxx1,P=1+xxx1, với x0x0x1x1

a) Rút gọn biểu thức P

b) Tìm giá trị của x, biết P > 3

Câu 2. (2 điểm)

1) Cho parabol (P):y=x2(P):y=x2  và  đường thẳng (d):y=x+2.(d):y=x+2.

a) Vẽ (d)(d)(P)(P) trên cùng một mặt phẳng tọa độ Oxy.

b)  Tìm tọa độ giao điểm của parabol (P)(P) và đường thẳng (d)(d) bằng phép tính.

2) Không sử dụng máy tính, giải hệ phương trình sau: {3x+y=52xy=10.

Câu 3. (2,5 điểm)

1) Cho phương trình x22mx+2m1=0 (m là tham số)   (1)   

a)  Giải phương trình (1) với m=2.

b) Tìm m để phương trình (1) có hai nghiệm x1,x2 sao cho: (x212mx1+3)(x222mx22)=50.

2) Quãng đường AB dài 50 km. Hai xe máy khởi hành cùng một lúc từ A đến B. Vận tốc xe thứ nhất lớn hơn vận tốc xe thứ hai 10 km/h, nên xe thứ nhất đến B trước xe thứ hai 15 phút. Tính vận tốc của mỗi xe.

Câu 4. (1,0 điểm):

Cho tam giác ABC vuông tại A, đường cao AH (HBC) . Biết AC = 8cm và BC = 10 cm. Tính độ dài AB, BH, CH  và AH.

Câu 5. (2,5 điểm)

Cho đường tròn tâm (O), từ điểm M ở bên ngoài đường tròn (O) kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa MD; O B nằm về hai phía so với cát tuyến MCD).

a) Chứng minh tứ giác MAOB nội tiếp.

b) Chứng minh MB2=MC.MD

c) Gọi H là giao điểm của AB OM. Chứng minh AB là phân giác của ^CHD.

Lời giải chi tiết

Câu 1.

1.  Tính giá trị của các biểu thức

M=36+25

N=(51)25

Ta có:

M=36+25

=62+52=6+5=11

N=(51)25

=|51|5

=515

=1(Do51>0)

2. Cho biểu thức P=1+xxx1, với x0x1

a)  Rút gọn biểu thức P

Với x0x1 ta có:

P=1+xxx1=1+x(x1)x1=1+x

b) Tìm giá trị của x, biết P > 3

P>31+x>3x>2x>4

Kết hợp với điều kiện: x0x1 ta được x>4

Vậy với x>4 thì P>3

Câu 2:

1) Cho parabol (P):y=x2  và  đường thẳng (d):y=x+2.

a) Vẽ  (d)  và (P) trên cùng một mặt phẳng tọa độ Oxy.

+) Vẽ đồ thị hàm số: (d):y=x+2.

x

0

2

y=x+2

2

0

+) Vẽ đồ thị hàm số: (P):y=x2.

x

2

1

0

1

2

y=x2

4

1

0

1

4

Đồ thị hàm số:

b)  Tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) bằng phép tính.

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình hoành độ giao điểm.

Ta có phương trình hoành độ giao điểm của hai đồ thị là:

x+2=x2x2+x2=0x2+2xx2=0x(x+2)(x+2)=0(x+2)(x1)=0[x+2=0x1=0[x=2y=4x=1y=1.

Vậy hai đồ thị cắt nhau tại hai điểm phân biệt A(2;4)B(1;1).

2) Không sử dụng máy tính, giải hệ phương trình sau: {3x+y=52xy=10.

{3x+y=52xy=10{y=2x105x=15

{x=3y=2.310{x=3y=4.

Vậy hệ phương trình có nghiệm duy nhất: (x;y)=(3;4).

Câu 3:

1) Cho phương trình x22mx+2m1=0 (m là tham số)   (1)   

a)  Giải phương trình (1) với m=2.

Thay m=2 vào phương trình (1) ta được:

(1)x24x+3=0x23xx+3=0x(x3)(x3)=0(x1)(x3)=0[x1=0x3=0[x=1x=3.

Vậy với m=2 thì phương trình có tập nghiệm S={1;3}. 

b) Tìm m để phương trình (1) có hai nghiệm x1,x2 sao cho: (x212mx1+3)(x222mx22)=50.

Phương trình (1) có hai nghiệm phân biệt Δ>0

m22m+1>0(m1)2>0m10m1.

Với m1 thì phương trình (1) có hai nghiệm phân biệt x1,x2.

Khi đó ta có: {x212mx1+2m1=0x212mx1+2m1=0.

Áp dụng hệ thức Vi-ét ta có: {x1+x2=2mx1x2=2m1.

Theo đề bài ta có: (x212mx1+3)(x222mx22)=50

(x212mx1+2m12m+4)(x222mx2+2m12m1)=50(42m)(2m1)=50(2m4)(2m+1)=50(m2)(2m+1)=252m2+m4m2=252m23m27=02m29m+6m27=0m(2m9)+3(2m9)=0(2m9)(m+3)=0[2m9=0m+3=0[m=92(tm)m=3(tm).

Vậy m=92m=3 thỏa mãn điều kiện bài toán.

2) Quãng đường AB dài 50 km. Hai xe máy khởi hành cùng một lúc từ A đến B. Vận tốc xe thứ nhất lớn hơn vận tốc xe thứ hai 10 km/h, nên xe thứ nhất đến B trước xe thứ hai 15 phút. Tính vận tốc của mỗi xe.

Gọi vận tốc của xe thứ nhất là x(km/h)(x>10).

Vận tốc của xe thứ hai là: x10(km/h).

Thời gian xe thứ nhất đi từ A đến B là 50x(h) ;

Thời gian xe thứ hai đi từ A đến B là: 50x10(h).

Vì xe thứ nhất đến B trước xe thứ hai 15 phút = 14h nên ta có phương trình: 50x1050x=14

4.50.x4.50(x10)=x(x10)200x200x+2000=x210xx210x2000=0x250x+40x2000=0x(x50)+40(x50)=0(x50)(x+40)=0[x50=0x+40=0[x=50(tm)x=40(ktm).

Vậy vận tốc của xe thứ nhất là 50km/h và vận tốc xe thứ hai là 5010=40km/h.

Câu 4.

Cho tam giác ABC vuông tại A, đường cao AH (HBC) . Biết AC = 8cm và BC = 10 cm. Tính độ dài AB, BH, CH  và AH.

 

+) Tính  AB

Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có: AB2+AC2=BC2AB2=BC2AC2=10282=36AB=6(cm)

+) Tính BH

Áp dụng hệ thức lượng trong tam giác vuông ABC có: AB2=BH.BC

BH=AB2BC=6210=3,6(cm)

+) Tính CH

Áp dụng hệ thức lượng trong tam giác vuông ABC có: AC2=CH.BC

CH=AC2BC=8210=6,4(cm)

+) Tính AH

Áp dụng hệ thức lượng trong tam giác vuông ABC  ta có: AH2=BH.CH=3,6.6,4=23,04 AH=4,8(cm)

Câu 5.

 

a) Chứng minh tứ giác MAOB nội tiếp.

Ta có ^OAM=^OBM=900 (Do MA, MB là tiếp tuyến của đường tròn (O))

Xét tứ giác OAMB có: ^OAM+^OBM=900+900=1800 Tứ giác OAMB là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

b) Chứng minh MB2=MC.MD

Xét tam giác MBC và tam giác MDB có:

^BMD chung;

^MBC=^MDB (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung BC)

ΔMBCΔMDB(g.g)

MBMD=MCMB

MB2=MC.MD 

c) Gọi H là giao điểm của AB OM. Chứng minh AB là phân giác của ^CHD.

Ta có MA=MB (tính chất hai tiếp tuyến cắt nhau) M thuộc trung trực của AB;

OA=OB(=R)O thuộc trung trực của AB;

OM là trung trực của AB OMAB

Xét tam giác vuông OMB MB2=MH.MO (hệ thức lượng trong tam giác vuông).

MB2=MC.MD(cmt)

MH.MO=MC.MD

MCMO=MHMD

Xét tam giác MCHMOD có :

^OMD chung ; 

MCMO=MHMD(cmt)ΔMCHΔMOD(c.g.c)

^MHC=^MDO 

 (hai góc tương ứng) (1).

^MHC+^OHC=1800 ^MDO+^OHC=1800 Tứ giác OHCD là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

^OHD=^OCD (2) (hai góc nội tiếp cùng chắn cung OD).

^OCD=^ODC=^MDO (3) (tam giác OCD cân tại O);

Từ (1), (2) và (3) ^MHC=^OHD.

900^MHC=900^OHD ^CHB=^BHD.

Vậy HB là tia phân giác của góc CHD hay AB là tia phân giác của góc CHD.

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close