Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 1 - Hình học 8

Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 1 - Hình học 8

Quảng cáo

Đề bài

Cho tam giác ABC, trọng tâm G. Gọi \(A'B'C'\) lần lượt là điểm đối xứng của A, B, C qua G.

a) Chứng minh tứ giác \(BC'B'C\) là hình bình hành. 

b) Chứng minh: \(\Delta A'B'C' = \Delta ABC.\)

Phương pháp giải - Xem chi tiết

Sử dụng: 

Hai điểm gọi là đối xứng với nhau qua điểm \(O\) nếu \(O\) là trung điểm của đoạn thẳng nối hai điểm đó.

Tứ giác có hai đường chéo giao nhau tại trung điểm của mỗi đường là hình bình hành

 

Hình bình hành có các cặp cạnh đối bằng nhau

Lời giải chi tiết

a) \(B’ B\) và \(C’,C\) đối xứng nhau qua G nên G là trung điểm của \(BB’\) và \(CC’\)

\( \Rightarrow BC’B’C\) là hình bình hành (Tứ giác có hai đường chéo giao nhau tại trung điểm của mỗi đường là hình bình hành)

b) Chứng minh tương tự ta được \(AB’,A’B,C’ACA’\) là hình bình hành

suy ra

\(\eqalign  & B’C’= BC, \)

 \( C’A’ = AC,\)

 \(  B’A’ = AB  \)

Do đó \(\Delta A’B’C’= \Delta ABC\left( {c.c.c} \right)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close