Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Đại số 8

Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Đại số 8

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Giả sử tất cả các phân thức trong đề bài đều có nghĩa.

Bài 1. Tìm m, biết : \({{\left( {{x^3} + 8} \right):m} \over {\left( {{x^2} - 4} \right):m}} = {{{x^2} - 2x + 4} \over {x - 2}}.\)  

Bài 2. Tìm P, biết : \({{{x^2} + 2x + 1} \over {2{x^2} - 2}} = {{x + 1} \over P}.\)  

Bài 3. Đưa các phân thức sau về cùng tử thức : \({{{x^3} - 1} \over {{x^2} + 1}}\) và \({{x - 1} \over {x + 1}}.\)  

Bài 4. Đưa các phân thức sau về cùng mẫu thức : \({1 \over {{a^2} - 4}};{1 \over {{a^3} - 8}};{1 \over {a + 2}}.\)  

LG bài 1

Phương pháp giải:

Rút gọn vế trái rồi suy ra m

Lời giải chi tiết:

Ta có :

\({{\left( {{x^3} + 8} \right):m} \over {\left( {{x^2} - 4} \right):m}} = {{\left[ {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)} \right]:m} \over {\left( {x + 2} \right)\left( {x - 2} \right):m}} \)\(\;= {{{x^2} - 2x + 4} \over {x - 2}}\)

Suy ra VT=VP với mọi m khác 0

Vậy m khác 0

LG bài 2

Phương pháp giải:

Rút gọn vế trái rồi suy ra P

Lời giải chi tiết:

Ta có : \({{{x^2} + 2x + 1} \over {2{x^2} - 2}} = {{{{\left( {x + 1} \right)}^2}} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}} = {{x + 1} \over {2\left( {x - 1} \right)}}.\)  

Vậy \(P = 2\left( {x - 1} \right) = 2x - 2.\)  

LG bài 3

Phương pháp giải:

Quy đồng tử thức hai phân thức

Lời giải chi tiết:

Ta có : \({{x - 1} \over {x + 1}} = {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}} = {{{x^3} - 1} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}.\)  

Vậy \({{{x^3} - 1} \over {{x^2} + 1}}\) và \({{{x^3} - 1} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}\) là hai phân thức có cùng tử thức.

LG bài 4

Phương pháp giải:

Phân tích các mẫu thành nhân tử rồi quy đồng mẫu thức 3 phân thức

Lời giải chi tiết:

Ta có :

\({1 \over {{a^2} - 4}} = {1 \over {\left( {a - 2} \right)\left( {a + 2} \right)}} = {{{a^2} + 2a + 4} \over {\left( {a - 2} \right)\left( {a + 2} \right)\left( {{a^2} + 2a + 4} \right)}} \)\(\;= {{{a^2} + 2a + 4} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}};\)

\({1 \over {{a^3} - 8}} = {{a + 2} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}}\)

\({1 \over {a + 2}} = {{{a^3} - 8} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}}.\)  

 Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close