Đề kiểm tra 15 phút Toán 11 chương 8: Quan hệ vuông góc trong không gian - Đề số 1Đề bài
Câu 1 :
Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$. Mặt phẳng $\left( P \right)$ song song với $AB$ và $CD$ lần lượt cắt $BC,{\rm{ }}DB,{\rm{ }}AD,{\rm{ }}AC$ tại $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$. Tứ giác $MNPQ$ là hình gì?
Câu 2 :
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot \left( {ABCD} \right)\). Gọi \(AE;AF\) lần lượt là các đường cao của tam giác \(SAB\) và tam giác $SAD$. Gọi \(M\) là giao điểm của \(SC\) với \( (AEF) \). Chọn khẳng định đúng trong các khẳng định sau ?
Câu 3 :
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và đáy \(ABCD\) là hình chữ nhật. Gọi \(O\) là tâm của \(ABCD\) và \(I\) là trung điểm của \(SC\). Khẳng định nào sau đây sai ?
Câu 4 :
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cạnh huyền $BC = a$. Hình chiếu vuông góc của \(S\) lên $\left( {ABC} \right)$ trùng với trung điểm$BC$. Biết $SB = a$. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right)$.
Câu 5 :
Trong mặt phẳng \(\left( \alpha \right)\) cho tứ giác \(ABCD\) và một điểm \(S\) tùy ý. Mệnh đề nào sau đây đúng?
Câu 6 :
Cho hình chóp \(S.ABC\) có \(SA \bot (ABC)\) và \(AB \bot BC.\) Số các mặt của tứ diện \(S.ABC\) là tam giác vuông là:
Câu 7 :
Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình vuông cạnh bằng \(a\) và $SA \bot \left( {ABCD} \right)$. Biết \(SA = \dfrac{{a\sqrt 6 }}{3}\). Tính góc giữa $SC$ và $\left( {ABCD} \right)$.
Câu 8 :
Cho hình lập phương \(ABCD.A'B'C'D'\). Chọn khẳng định sai?
Câu 9 :
Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?
Câu 10 :
Cho hình chóp \(S.ABC\) có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu \(H\) của $S$ trên \((ABC)\) là
Câu 11 :
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông và \(SA \bot \left( {ABCD} \right)\). Gọi \(I\), \(J\), \(K\) lần lượt là trung điểm của \(AB\), \(BC\) và \(SB\). Khẳng định nào sau đây sai?
Câu 12 :
Cho hình thoi $ABCD$ có tâm $O,\widehat {ADC} = {60^0},AC = 2a$. Lấy điểm $S$ không thuộc $\left( {ABCD} \right)$ sao cho $SO \bot \left( {ABCD} \right)$. Gọi \(\alpha \) là góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABCD} \right)\) và \(\tan \alpha = \dfrac{1}{2}\). Gọi \(\beta \) là góc giữa $SC$ và $\left( {ABCD} \right)$, chọn mệnh đề đúng :
Lời giải và đáp án
Câu 1 :
Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$. Mặt phẳng $\left( P \right)$ song song với $AB$ và $CD$ lần lượt cắt $BC,{\rm{ }}DB,{\rm{ }}AD,{\rm{ }}AC$ tại $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$. Tứ giác $MNPQ$ là hình gì?
Đáp án : C Phương pháp giải :
- Xác đinh thiết diện của hình tứ diện khi cắt bởi mặt phẳng \(\left( P \right)\). - Xác định góc giữa hai đường thẳng \(MN,MQ\) bằng cách sử dụng tính chất \(\left\{ \begin{array}{l}a//a'\\b//b'\end{array} \right. \Rightarrow \widehat {\left( {a,b} \right)} = \widehat {\left( {a',b'} \right)}\) Lời giải chi tiết :
Ta có: $\left\{ \begin{array}{l}\left( {MNPQ} \right){\rm{//}}AB\\\left( {MNPQ} \right) \cap \left( {ABC} \right) = MQ\end{array} \right. $ $\Rightarrow MQ{\rm{//}}AB$ Tương tự ta có: \(MN{\rm{//}}CD,\,\,NP{\rm{//}}AB,\,\,QP{\rm{//}}C{\rm{D}}\). Do đó tứ giác \(MNPQ\) là hình bình hành lại có \(MN \bot MQ\left( {do\,AB \bot CD\,} \right)\). Vậy tứ giác \(MNPQ\) là hình chữ nhật.
Câu 2 :
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot \left( {ABCD} \right)\). Gọi \(AE;AF\) lần lượt là các đường cao của tam giác \(SAB\) và tam giác $SAD$. Gọi \(M\) là giao điểm của \(SC\) với \( (AEF) \). Chọn khẳng định đúng trong các khẳng định sau ?
Đáp án : D Phương pháp giải :
Sử dụng điều kiện đường thẳng vuông góc với mặt phẳng để chứng minh \(SC \bot \left( {AEF} \right).\) Lời giải chi tiết :
Ta có: \(\left\{ \begin{array}{l}AB \bot BC\\SA \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AE.\) Vậy: \(\left\{ \begin{array}{l}AE \bot SB\\AE \bot BC\end{array} \right. \Rightarrow AE \bot SC\left( 1 \right)\) Tương tự : \(AF \bot SC\left( 2 \right)\) Từ \(\left( 1 \right);\left( 2 \right) \Rightarrow SC \bot \left( {AEF} \right).\) Mà \(AM \subset \left( {AEF} \right)\) nên \(AM \bot SC\).
Câu 3 :
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và đáy \(ABCD\) là hình chữ nhật. Gọi \(O\) là tâm của \(ABCD\) và \(I\) là trung điểm của \(SC\). Khẳng định nào sau đây sai ?
Đáp án : C Phương pháp giải :
Sử dụng điều kiện đường thẳng vuông góc mặt phẳng và định nghĩa mặt phẳng trung trực để xét tính đúng, sai của từng đáp án. Lời giải chi tiết :
Có \(IO\) là đường trung bình tam giác \(SAC\) nên \(IO//SA\) nên \(IO \bot \left( {ABCD} \right)\) nên A đúng. Có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot SB\) nên B đúng Và \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\) nên phương án D đúng. Đáp án C sai vì nếu \(\left( {SAC} \right)\) là mặt phẳng trung trực của \(BD\) \( \Rightarrow BD \bot AC\)(vô lý).
Câu 4 :
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cạnh huyền $BC = a$. Hình chiếu vuông góc của \(S\) lên $\left( {ABC} \right)$ trùng với trung điểm$BC$. Biết $SB = a$. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right)$.
Đáp án : C Phương pháp giải :
- Xác định góc giữa \(SA\) và \(\left( {ABC} \right)\) bởi định nghĩa: là góc giữa \(SA\) và hình chiếu của nó trên \(\left( {ABC} \right)\). - Tính góc tìm được ở trên, sử dụng các tỉ số lượng giác trong tam giác vuông. Lời giải chi tiết :
Gọi \(H\) là trung điểm của \(BC\) suy ra \(AH = BH = CH = \dfrac{1}{2}BC = \dfrac{a}{2}\). Ta có: \(SH \bot \left( {ABC} \right) \Rightarrow SH = \sqrt {S{B^2} - B{H^2}} = \dfrac{{a\sqrt 3 }}{2}\) \(\widehat {\left( {SA,\left( {ABC} \right)} \right)} = \widehat {\left( {SA,HA} \right)} = \widehat {SAH} = \alpha \) $ \Rightarrow \tan \alpha = \dfrac{{SH}}{{AH}} = \sqrt 3 \Rightarrow \alpha = 60^\circ $.
Câu 5 :
Trong mặt phẳng \(\left( \alpha \right)\) cho tứ giác \(ABCD\) và một điểm \(S\) tùy ý. Mệnh đề nào sau đây đúng?
Đáp án : C Lời giải chi tiết :
A. Sai vì \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AB} + \overrightarrow {CD} \Leftrightarrow \overrightarrow {AC} - \overrightarrow {AB} + \overrightarrow {DC} - \overrightarrow {DB} = \overrightarrow 0 \Leftrightarrow B \equiv C\) (Vô lí) B. Sai vì: Gọi \(O\) và \(O'\) theo thứ tự là trung điểm của \(AC\) và \(BD\). Ta có \(\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \) và \(\overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SO'} \Leftrightarrow \overrightarrow {SO} = \overrightarrow {SO'} \Leftrightarrow O \equiv O'\) điều này không đúng nếu \(ABCD\) không phải là hình bình hành. C. Đúng – Chứng minh tương tự như ý B. D. sai vì: Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\). Khi đó: $\begin{array}{l} Hay \(O\) là trung điểm \(MN\). Điều này chưa chắc đúng nên D sai.
Câu 6 :
Cho hình chóp \(S.ABC\) có \(SA \bot (ABC)\) và \(AB \bot BC.\) Số các mặt của tứ diện \(S.ABC\) là tam giác vuông là:
Đáp án : D Phương pháp giải :
Chứng minh tam giác \(SBC\) vuông bằng cách chứng minh \(SB \bot BC\), sử dụng phương pháp chứng minh hai đường thẳng vuông góc. Lời giải chi tiết :
Có \(AB \bot BC \Rightarrow \Delta ABC\) là tam giác vuông tại \(B.\) Ta có \(SA \bot (ABC) \Rightarrow \left\{ \begin{array}{l}SA \bot AB\\SA \bot AC\end{array} \right. \Rightarrow \Delta SAB,\Delta SAC\) là các tam giác vuông tại \(A.\) Mặt khác \(\left\{ \begin{array}{l}AB \bot BC\\SA \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB \Rightarrow \Delta SBC\) là tam giác vuông tại \(B.\) Vậy bốn mặt của tứ diện đều là tam giác vuông.
Câu 7 :
Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình vuông cạnh bằng \(a\) và $SA \bot \left( {ABCD} \right)$. Biết \(SA = \dfrac{{a\sqrt 6 }}{3}\). Tính góc giữa $SC$ và $\left( {ABCD} \right)$.
Đáp án : A Phương pháp giải :
- Xác định góc giữa $SC$ và $\left( {ABCD} \right)$: là góc giữa \(SC\) và hình chiếu của nó trên \(\left( {ABCD} \right)\). - Tính góc ở trên bởi tỉ số lượng giác trong tam giác vuông. Lời giải chi tiết :
Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC\) \( \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC,AC} \right)} = \widehat {SCA} = \alpha \) \(ABCD\) là hình vuông cạnh \(a\) \( \Rightarrow AC = a\sqrt 2 ,SA = \dfrac{{a\sqrt 6 }}{3}\) $ \Rightarrow \tan \alpha = \dfrac{{SA}}{{AC}} = \dfrac{{\sqrt 3 }}{3} \Rightarrow \alpha = 30^\circ $.
Câu 8 :
Cho hình lập phương \(ABCD.A'B'C'D'\). Chọn khẳng định sai?
Đáp án : B Phương pháp giải :
Xác định góc giữa các đường thẳng và kết luận (sử dụng tích vô hướng của hai véc tơ). Lời giải chi tiết :
Ta có: $\overrightarrow {AA'} .\overrightarrow {B'D'} = \overrightarrow {BB'} .\overrightarrow {BD} = \overrightarrow {BB'} .\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)$ $ = \overrightarrow {BB'} .\overrightarrow {BA} + \overrightarrow {BB'} .\overrightarrow {BC} = 0$ (vì $\left( {\overrightarrow {BB'} ,\overrightarrow {BA} } \right) = {90^0}$ và $\left( {\overrightarrow {BB'} ,\overrightarrow {BC} } \right) = {90^0}$) Do đó: $\left( {\overrightarrow {AA'} ,\overrightarrow {B'D'} } \right) = {90^0} \Rightarrow \widehat {\left( {AA',B'D'} \right)} = {90^0}$
Câu 9 :
Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?
Đáp án : B Phương pháp giải :
Sử dụng công thức cộng véc tơ : xen điểm \(G\) vào các véc tơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {BC} ,\overrightarrow {BD} ,\overrightarrow {CD} \) với chú ý : \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \) và \({\overrightarrow {AB} ^2} = A{B^2}\). Lời giải chi tiết :
$\begin{array}{l}A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2}\\ = {\left( {\overrightarrow {AG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {AG} + \overrightarrow {GC} } \right)^2} + {\left( {\overrightarrow {AG} + \overrightarrow {GD} } \right)^2} + {\left( {\overrightarrow {BG} + \overrightarrow {GC} } \right)^2} + {\left( {\overrightarrow {BG} + \overrightarrow {GD} } \right)^2} + {\left( {\overrightarrow {CG} + \overrightarrow {GD} } \right)^2}\end{array}$ $= 3A{G^2} + 3B{G^2} + 3C{G^2} + 3D{G^2} + 2 {\overrightarrow {AG} .\overrightarrow {GB} + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} } \left( 1 \right)$ Lại có: \(\begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} = \overrightarrow 0 \Leftrightarrow {\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} } \right)^2} = 0\\ \Leftrightarrow G{A^2} + G{B^2} + G{C^2} + G{{\rm{D}}^2} = 2 {\overrightarrow {AG} .\overrightarrow {GB} + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} } \left( 2 \right)\end{array}\) Từ (1) và (2) suy ra $A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 4\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)$
Câu 10 :
Cho hình chóp \(S.ABC\) có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu \(H\) của $S$ trên \((ABC)\) là
Đáp án : A Phương pháp giải :
Sử dụng định nghĩa góc giữa hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến. Lời giải chi tiết :
Gọi \(M,N,P\) lần lượt là hình chiếu của $S$ lên các cạnh \(AB,BC,AC\) \( \Rightarrow \widehat {SMH} = \widehat {SNH} = \widehat {SPH} \Rightarrow \Delta SMH = \Delta SNH = \Delta SPH.\) \( \Rightarrow HM = HN = HP \Rightarrow \) \(H\) là tâm dường tròn nội tiếp của \(\Delta ABC.\)
Câu 11 :
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông và \(SA \bot \left( {ABCD} \right)\). Gọi \(I\), \(J\), \(K\) lần lượt là trung điểm của \(AB\), \(BC\) và \(SB\). Khẳng định nào sau đây sai?
Đáp án : C Phương pháp giải :
Sử dụng các cách chứng minh đường thẳng vuông góc mặt phẳng, mặt phẳng song song mặt phẳng để xét tính đúng, sai của các đáp án. Lời giải chi tiết :
Do \(IJ\;{\rm{//}}\;AC\) và \(IK{\rm{//}}SA\) nên \(\left( {IJK} \right){\rm{//}}\left( {SAC} \right)\). Vậy A đúng. Do \(BD \bot AC\) và \(BD \bot SA\) nên \(BD \bot \left( {SAC} \right)\) nên D đúng. Do \(BD \bot \left( {SAC} \right)\) và \(\left( {IJK} \right){\rm{//}}\left( {SAC} \right)\) nên \(BD \bot \left( {IJK} \right)\) nên B đúng. Vậy C sai.
Câu 12 :
Cho hình thoi $ABCD$ có tâm $O,\widehat {ADC} = {60^0},AC = 2a$. Lấy điểm $S$ không thuộc $\left( {ABCD} \right)$ sao cho $SO \bot \left( {ABCD} \right)$. Gọi \(\alpha \) là góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABCD} \right)\) và \(\tan \alpha = \dfrac{1}{2}\). Gọi \(\beta \) là góc giữa $SC$ và $\left( {ABCD} \right)$, chọn mệnh đề đúng :
Đáp án : C Phương pháp giải :
- Xác định góc giữa \(SB\) và \(\left( {ABCD} \right)\), tính \(SO\). - Xác định góc giữa \(SC\) và \(\left( {ABCD} \right)\) và tính tỉ số lượng giác của góc đó. Lời giải chi tiết :
Vì \(SO \bot \left( {ABCD} \right)\) nên \(OB\) là hình chiếu của \(SB\) trên mặt phẳng đáy. Do đó \(\alpha = \left( {SB,\left( {ABCD} \right)} \right) = \left( {SB,OB} \right) = \widehat {SBO}\) và \(\beta = \left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,OC} \right) = \widehat {SCO}\). Hình thoi \(ABCD\) có \(AC = 2a,\widehat {ADC} = {60^0} \Rightarrow \Delta ADC\) đều \( \Rightarrow AD = 2a\) Tam giác \(AOD\) vuông tại \(O\) nên \(OD = \sqrt {A{D^2} - A{O^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \Rightarrow OB = a\sqrt 3 \). Lại có \(\tan \alpha = \dfrac{1}{2} \Rightarrow \dfrac{{SO}}{{OB}} = \dfrac{1}{2} \Rightarrow SO = \dfrac{1}{2}OB = \dfrac{1}{2}.a\sqrt 3 = \dfrac{{a\sqrt 3 }}{2}\). Vậy \(\tan \beta = \tan \widehat {SCO} = \dfrac{{SO}}{{OC}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{a} = \dfrac{{\sqrt 3 }}{2}\). |