Đề kiểm tra 15 phút chương 8: Quan hệ vuông góc trong không gian - Đề số 1
Số câu: 12 câu Thời gian làm bài: 15 phút
Phạm vi kiểm tra: Từ bài véc tơ trong không gian đến hết bài góc giữa đường thẳng và mặt phẳng
Cho tứ diện $ABCD$ có $AB$ vuông góc với $CD$. Mặt phẳng $\left( P \right)$ song song với $AB$ và $CD$ lần lượt cắt $BC,{\rm{ }}DB,{\rm{ }}AD,{\rm{ }}AC$ tại $M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q$. Tứ giác $MNPQ$ là hình gì?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot \left( {ABCD} \right)\). Gọi \(AE;AF\) lần lượt là các đường cao của tam giác \(SAB\) và tam giác $SAD$. Gọi \(M\) là giao điểm của \(SC\) với \( (AEF) \). Chọn khẳng định đúng trong các khẳng định sau ?
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và đáy \(ABCD\) là hình chữ nhật. Gọi \(O\) là tâm của \(ABCD\) và \(I\) là trung điểm của \(SC\). Khẳng định nào sau đây sai ?
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cạnh huyền $BC = a$. Hình chiếu vuông góc của \(S\) lên $\left( {ABC} \right)$ trùng với trung điểm$BC$. Biết $SB = a$. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right)$.
Trong mặt phẳng \(\left( \alpha \right)\) cho tứ giác \(ABCD\) và một điểm \(S\) tùy ý. Mệnh đề nào sau đây đúng?
Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình vuông cạnh bằng \(a\) và $SA \bot \left( {ABCD} \right)$. Biết \(SA = \dfrac{{a\sqrt 6 }}{3}\). Tính góc giữa $SC$ và $\left( {ABCD} \right)$.
Cho hình lập phương \(ABCD.A'B'C'D'\). Chọn khẳng định sai?
Cho tứ diện $ABCD$ có trọng tâm $G$. Chọn khẳng định đúng?
Cho hình chóp \(S.ABC\) có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu \(H\) của $S$ trên \((ABC)\) là
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông và \(SA \bot \left( {ABCD} \right)\). Gọi \(I\), \(J\), \(K\) lần lượt là trung điểm của \(AB\), \(BC\) và \(SB\). Khẳng định nào sau đây sai?
Cho hình thoi $ABCD$ có tâm $O,\widehat {ADC} = {60^0},AC = 2a$. Lấy điểm $S$ không thuộc $\left( {ABCD} \right)$ sao cho $SO \bot \left( {ABCD} \right)$. Gọi \(\alpha \) là góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABCD} \right)\) và \(\tan \alpha = \dfrac{1}{2}\). Gọi \(\beta \) là góc giữa $SC$ và $\left( {ABCD} \right)$, chọn mệnh đề đúng :