Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao Biểu thị các lôgarit sau đây theo lôgarit thập phân (rồi cho kết quả bằng máy tính, làm tròn đến chữ số thập phân thứ hai):
Xem lời giảiKhông dùng bảng số và máy tính, hãy sánh:
Xem lời giảiTrong mỗi trường hợp sau, hãy tìm x:
Xem lời giảiSố nguyên tố dạng , trong đó p là một số nguyên tố được gọi là số nguyên tố Mec-sen (M.Mersenne, 1588-1648, người Pháp). Ơ-le phát hiện năm 1750. Luy-ca (Lucas Edouard, 1842-1891, người Pháp). Phát hiện năm 1876. được phát hiện năm 1996. Hỏi rằng nếu viết ba số đó trong hệ thập phân thì mỗi số có bao nhiêu chữ số? (Dễ thấy rằng chữ số của bằng chữ số của và để tính chữ số của có thể lấy và để tính chữ số của có thể lấy (xem ví dụ 8)
Xem lời giải