Câu hỏi:

Cho lăng trụ tam giác ABC.A’B’C’. Đặt \(AA' = a;\,\,AB = b,\,\,AC = c\). Gọi I là điểm thuộc đường thẳng CC’ sao cho \(\overrightarrow {C'I}  = \dfrac{1}{3}\overrightarrow {C'C} \), G là điểm thỏa mãn \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \) . Biểu diễn vectơ\(\overrightarrow {IG} \) qua các vectơ \(\overrightarrow a ;\,\,\overrightarrow b ;\,\,\overrightarrow c \). Trong các khẳng định sau, khẳng định nào là khẳng định đúng?

  • A \(\overrightarrow {IG}  = \dfrac{1}{4}\left( {\dfrac{1}{3}\overrightarrow a  + 2\overrightarrow b  - 3\overrightarrow c } \right)\)                           
  • B \(\overrightarrow {IG}  = \dfrac{1}{3}\left( {\overrightarrow a  + \overrightarrow b  + 2\overrightarrow c } \right)\)
  • C  \(\overrightarrow {IG}  = \dfrac{1}{4}\left( {\overrightarrow a  + \overrightarrow c  - 2\overrightarrow b } \right)\)                                                                            
  • D \(\overrightarrow {IG}  = \dfrac{1}{4}\left( {\overrightarrow b  + \dfrac{1}{3}\overrightarrow c  - 2\overrightarrow a } \right)\)

Phương pháp giải:

Sử dụng công thức ba điểm.

Lời giải chi tiết:

 

 

\(\begin{array}{l}\overrightarrow {GB}  + \overrightarrow {GA'}  + \overrightarrow {GB'}  + \overrightarrow {GC'}  = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {IB}  + \overrightarrow {GI}  + \overrightarrow {IA'}  + \overrightarrow {GI}  + \overrightarrow {IB'}  + \overrightarrow {GI}  + \overrightarrow {IC'}  = \overrightarrow 0 \\ \Leftrightarrow 4\overrightarrow {GI}  + \left( {\overrightarrow {IB}  + \overrightarrow {IA'}  + \overrightarrow {IB'}  + \overrightarrow {IC'} } \right) = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {IG}  = \dfrac{1}{4}\left( {\overrightarrow {IC}  + \overrightarrow {CA}  + \overrightarrow {AB}  + \overrightarrow {IC'}  + \overrightarrow {C'A'}  + \overrightarrow {IC'}  + \overrightarrow {C'A'}  + \overrightarrow {A'B'}  + \overrightarrow {IC'} } \right)\\ \Leftrightarrow \overrightarrow {IG}  = \dfrac{1}{4}\left( {\overrightarrow {IC}  + 3\overrightarrow {IC'}  + 3\overrightarrow {CA}  + 2\overrightarrow {A'B'} } \right)\\ \Leftrightarrow \overrightarrow {IG}  = \dfrac{1}{4}\left( { - \dfrac{2}{3}\overrightarrow a  + \overrightarrow a  - 3\overrightarrow c  + 2\overrightarrow b } \right) = \dfrac{1}{4}\left( {\dfrac{1}{3}\overrightarrow a  + 2\overrightarrow b  - 3\overrightarrow c } \right)\end{array}\)

Chọn A.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay