Môn Toán - Lớp 12
30 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ nhận biết
Câu hỏi:
Giá trị nhỏ nhất của hàm số \(y=2{{x}^{3}}+3{{x}^{2}}-12x+2\) trên đoạn \(\left[ -\,1;2 \right]\) đạt tại \(x={{x}_{0}}.\) Giá trị \({{x}_{0}}\) bằng bao nhiêu ?
Phương pháp giải:
Khảo sát hàm số trên đoạn để tìm giá trị nhỏ nhất – giá trị lớn nhất
Lời giải chi tiết:
Xét hàm số \(f\left( x \right)=2{{x}^{3}}+3{{x}^{2}}-12x+2\) trên \(\left[ -\,1;2 \right],\) có \({f}'\left( x \right)=6{{x}^{2}}+6x-12;\,\,\forall x\in \mathbb{R}.\)
Phương trình \({f}'\left( x \right)=0\Leftrightarrow 6{{x}^{2}}+6x-12=0\Leftrightarrow \ \left[ \begin{align} & x=1\ \ \ \in \left[ -1;\ 2 \right] \\ & x=-2\ \ \notin \left[ -1;\ 2 \right] \\ \end{align} \right..\)
Tính \(f\left( -\,1 \right)=15;\,\,f\left( 1 \right)=-\,5;\,\,f\left( 2 \right)=6.\)
Do đó, hàm số đạt giá trị nhỏ nhất là \(-\,5.\) Xảy ra khi \(x=1.\)
Chọn B