Câu hỏi:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt x }}{x}\,\,khi\,\,x \ne 0\\0\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Xét hai mệnh đề sau:
(I) \(f'\left( 0 \right)=1\)
(II) Hàm số không có đạo hàm tại \({{x}_{0}}=0\)
Mệnh đề nào đúng?
Phương pháp giải:
Đạo hàm của hàm số \(y=f\left( x \right)\) tại điểm \(x={{x}_{0}}\) là \(f'\left( {{x}_{0}} \right)=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}\) (nếu tồn tại).
Lời giải chi tiết:
Ta có: \(\underset{x\to 0}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x-0}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{x}}{{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{x\sqrt{x}}=+\infty \Rightarrow \) Hàm số không có đạo hàm tại x = 0.
Chọn B.